A CSP Approach to Design CPS

Alexandre Chapoutot

joint work with Julien Alexandre dit Sandretto and Olivier Mullier, Adina M. Panchea, et al.
U2IS, ENSTA ParisTech, Palaiseau, France

SHARC
June 30, 2017

Context

Context

Context

Validated numerical integration

Differential constraint satisfaction problems

Context

Robot's behavior

A mobile robot

Thanks to Google...

@ moves = Continuous-time dynamical system
o depending on parameters = (bounded) uncertainties
@ using sensors = (bounded) uncertainties

@ and actuators = control input

3/33

Context

We want to do something with...

Global property: safety
Avoid obstacles, respect actuator limits, etc.

A goal

Reach an objective, perform a mission, etc.

Some requirements
For one scenario, one behavior (with numerical criteria)

= Some constraints on the robot’s behaviors

Classical problems in robotics

Controller synthesis, Design, Path planning, Fault detection, Safety analysis, etc.

33

Context

A small cyber-physical system: closed-loop control

e(t) u(t)

Control

Physics

o Physics is usually defined by non-linear differential equations (with parameters)

x = f(x(t), u(t),p) , y(t) = g(x(t))

@ Control may be a continuous-time Pl algorithm
t
e(t) = r(t) — y(t) , u(t) = Kpe(t) + K,-/ e(r)dr
0

What is designing a controller?
Find values for K, and K; such that a given specification is satisfied.

33

Context

Specification of PID Controllers

PID controller: requirements based on closed-loop response
T T

We observe the output of the plant

Overshoot: Less than 10%
Steady-state error: Less than 2% ——— |

Settling time: Less than 108 ——— |

Rise time: Less than 2s

00 2 4 6 8 10

Note: such properties come from the asymptotic behavior of the closed-loop system.

Classical method to study/verify closed-loop systems

Numerical simulations but
@ do not take into account that models are only an approximation;
@ produce approximate results.

and not adapted to deal with uncertainties

33

Context

Synthesis and Verification methods for/of cyber-physical systems
Some requirements
@ Shall deal with discrete-time, continuous-time parts and their interactions
o Shall take into account uncertainties: model, data, resolution methods
@ Shall consider temporal properties

Example of properties (coming from
box-RRT*)

@ system stays in safe zone (Vt) or
“ finishes in goal zone (3t)

@ system avoids obstacle (3t)

for different quantification’s of initial

1Pepy et al. Reliable robust path planning, Journal of AMCS, 2009

‘ ‘ state-space (Vx or 3x), parameters, etc.

33

Context

Our approach

Two antinomic facts
We want reliable results under uncertainties !

A known solution

Interval analysis works well for bounded uncertainties.

With dynamical systems 7
Validated simulation can help us.

Constraints on dynamical systems ?
A kind of temporal logic.

/33

Context

Set-based simulation

Definition
numerical simulation methods implemented with interval analysis methods

Goals

takes into account various uncertainties (bounded) or approximations to produce rigorous
results

Example
A simple nonlinear dynamics of a car

. —50.0v — 0.4v?
Ve —M

- with m € [990,1010] and v(0) € [10, 11]

One Implementation DynIBEX: a combination of CSP solver (IBEX') with validated
numerical integration methods based on Runge-Kutta

http://perso.ensta-paristech.fr/~chapoutot/dynibex/

1Gilles Chabert (EMN) et al. http://www.ibex-1ib.org

9/33

http://perso.ensta-paristech.fr/~chapoutot/dynibex/
http://www.ibex-lib.org

Validated numerical integration

Validated numerical integration

Context
Validated numerical integration

Differential constraint satisfaction problems

10/33

Validated numerical integration

Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0, T]

y="F(y) with y(0)=yo
IVP has a unique solution y(t;yo) if f : R" — R" is Lipschitz in y
but for our purpose we suppose f smooth enough, i.e., of class C¥
Goal of numerical integration

o Compute a sequence of time instants: to =0< t1 < ---<t, =T

o Compute a sequence of values: yo,¥1,...,Yn such that

Vie[0,n], yi~y(tiyo) .

11/33

Validated numerical integration

Validated solution of IVP for ODE

Goal of validated numerical integration

o Compute a sequence of time instants: thp =0< t1 < - - < t, =T

o Compute a sequence of values: [yo], [y1],- -, [yn] such that

Vie[0,n], [yi]>2y(tiyo) -

A two-step approach

/ \. Exact solution of y = f(y(t)) with y(0) € Vo
/ |

o\ Safe approximation at discrete time instants

i _} Safe approximation between time instants

12/33

Validated numerical integration

Simulation of an open loop system
A simple dynamics of a car
. —50.0y — 0.4y?
j= Y T A

with m € [990, 1010]
m

Simulation for 100 seconds with y(0) = 10

T
‘open-loop-trace.txt'u 1 ——
T2 —x—

The last step is y(100) = [0.0591842,0.0656237]

13/33

Validated numerical integration

Simulation of an open loop system
int main(){

const int n = 1;
Variable y(n);

IntervalVector state(n);
state[0] = 10.0;

// Dynamique d’une voiture avec incertitude sur sa
masse
/ Function ydot(y, (-50.0 * y[0] - 0.4 * y[0] * y[0])
N / Interval (990, 1010));
e ODE deflnltlon/ ivp_ode vdp = ivp_ode(ydot, 0.0, state);
o IVP definitio // Integration numerique ensembliste
tnition simulation simu = simulation(&vdp, 100, RK4, 1e-5);
simu.run_simulation();
o Parametric simulation
engine /_/For an export in order to plot
simu.exportld_yn("export-open-loop.txt", 0);

return 0;

}

14

33

Validated numerical integration

Simulation of a closed-loop system
A simple dynamics of a car with a Pl controller

I kp(10.0—y)-+kjw—50.0y —0.4y> .
.= m with m € [990, 1010], k, = 1440, k; = 35
w 100 —y

Simulation for 10 seconds with y(0) = w(0) =0

10

el
9 ST
o
O
sk A
,r>(+/
Tk X/
/X/’Kf
£/

61 Ny

X/

P
st 4/

v
4 #
#H
N /]
17
#
-
1
4
o4
-1
0 10 2 20 P 50 o 70

The last step is y(10) = [9.83413,9.83715]

15/33

Validated numerical integration

Simulation of a closed-loop system
#include "ibex.h"

using namespace ibex;
int main(){

const int n = 2;
Variable y(n);

IntervalVector state(n);
state[0] = 0.0;
state[1] = 0.0;

// Dynamique d’une voiture avec incertitude sur sa masse + Pl

Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))
/ Interval (990, 1010),
10.0 - y[0]));

ivp_ode vdp = ivp_ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, 10.0, RK4, 1e-7);
simu.run_simulation();

simu.exportld_yn("export-closed-loop.txt", 0);

return O;

}

16

33

Validated numerical integration

Simulation of an hybrid closed-loop system
A simple dynamics of a car with a discrete Pl controller

u(k) —50.0y — 0.4y?

y = — with m € [990, 1010]
i(t) = i(tk—1) + h(c — y(t)) with h = 0.005
u(te) = ko(c — y(tx)) + kii(tx) with k, = 1400, k; = 35

Simulation for 3 seconds with y(0) =0 and ¢ = 10

10

T T
‘closed-loop-hybrid-{race 1ty

9l

sk

0 100 200 300 400 500 600 17 /33

Validated numerical integration

Simulation of an hybrid closed-loop system

#include "ibex.h"

using namespace ibex;
using namespace std;

int main(){
const int n = 2; Variable y(n);
Affine2Vector state(n);
state[0] = 0.0; state[1] = 0.0;

double t = 0; const double sampling = 0.005;
Affine2 integral(0.0);

while (t < 3.0) { @ Manual handling of

Affine2 goal(10.0); . . .
Affine2 error = goal - state[0)]; discrete-time evolution

// Controleur Pl discret

integral = integral + sampling * error;
Affine2 u = 1400.0 * error + 35.0 * integral;
state[1] = u;

// Dynamique d’une voiture avec incertitude sur sa masse
Function ydot(y, Return((y[1] - 50.0 * y[0] - 0.4 * y[0] * y[0])

/ Interval (990, 1010), Interval(0.0)));
ivp-ode vdp = ivp_ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, sampling, RK4, le-6);
simu.run_simulation();

// Mise a jour du temps et des etats

state = simu.get_last(); t += sampling;
) g 0 pling 18/33

Differential constraint satisfaction problems

Differential constraint satisfaction problems

Context
Validated numerical integration

Differential constraint satisfaction problems

19/33

Differential constraint satisfaction problems
Basics of interval analysis

@ Interval arithmetic (defined also for: sin, cos, etc.):
[X1+ Iy, ¥] =lx + v, X +¥]
[X] [y, y] =[min{x * y, x . X * y, X v},

max{x * y, X * ¥, X x y,X * y}]

o Let an inclusion function [f] : IR — IR for f : R — R is defined as:

{f(a) | 3a € [N} < [FI([1N)
with a € R and | € IR.

Example of inclusion function: Natural inclusion
XI=[12, []=[-13] and f(x,y)=xy+x
[F1([x], Y1) = [x] * Y] + [x]

=[1,2] % [-1,3] +[1,2] = [-2,6] + [1,2] = [-1,8]

20/33

Differential constraint satisfaction problems

Numerical Constraint Satisfaction Problems

NCSP
A NCSP (V,D,C) is defined as follows:
o V:={wv,..., vy} is a finite set of variables which can also be represented by the
vector v;
@ D:={[w],...,[va]} is a set of intervals such that [v;] contains all possible values of
v;. It can be represented by a box [v] gathering all [vi];
o C:={c1,...,cm} is a set of constraints of the form ¢;(v) = fi(v) =0 or

ci(v)=gi(v) <0, with i :R" > R, g : R" > Rfor 1 <i<m.
Note: Constraints C are interpreted as a conjunction of equalities and inequalities.

Remark: The solution of a NCSP is a valuation of v ranging in [v] and satisfying the
constraints C.

Example
oV ={x}
e D, = {[17 10]} — x € [1,1.09861]

o C= {x exp(x) < 3}
Remark: if [v] = () then the problem is not satistafiable

21/33

Differential constraint satisfaction problems
IBEX in one slide
#include "ibex.h"

using namespace std,;
using namespace ibex;

int main() {
o Easy definition of Variable x;
functions Function f (x, x*exp(x));
NumConstraint c1(x, f(x) <= 3.0);
@ Numerical constraints _

CtcFwdBwd contractor(cl);

@ Pruning methods IntervalVector box(1);

box[0]=Interval(1,10);

@ Interval evaluation of
) cout << "f" << box << " = " << f.eval(box) << endl;
functions contractor.contract(box);
cout << "after contraction box = " << box << endl,
}

IBEX is also a parametric solver of constraints, an optimizer, etc.

22/33

Differential constraint satisfaction problems

Quantified Constraint Satisfaction Differential Problems

S=y="~f(y(t),u(t),p)

QCSDP
Let S be a differential system and tend € R4 the time limit. A QCSDP is a NCSP defined

by

@ a set of variables V including at least t, a vector yo, p, u
We represent these variables by the vector v;

@ an initial domain D containing at least [0, tend], Yo, U, and P;
@ a set of constraints C = {c1,..., c.} composed of predicates over sets, that is,
constraints of the form

¢ = Qv eDifi(v)o A, Vi<i<e

with Q € {3,V}, i : p(RIV) — o(R7) stands for non-linear arithmetic expressions
defined over variables v and solution of differential system S, y(t; yo, p,u) = y(v),
o€ {<,Ng} and A C RY where g > 0.

Note: we follow the same approach that Goldsztejn et al.?

2Including ODE Based Constraints in the Standard CP Framework, CP10
23

33

Differential constraint satisfaction problems

DynIBEX: a Box-QCSDP solver with restrictions

Solving arbitrary quantified constraints is hard!

We focus on particular problems of robotics involving quantifiers
@ Robust controller synthesis: Ju, Vp, Vyo + temporal constraints

@ Parameter synthesis: Jp, Vu, Vyo + temporal constraints
@ etc.

We also defined a set of temporal constraints useful to analyze/design robotic application.

Verbal property QCSDP translation
Stay in A Vt € [0, tend], [y](t,Vv") C Int(A)
In Aatr 3t € [0, tena], [y](t,v') C Int(A)
Has crossed A* | 3t € [0, tena], [y](t,v') N Hull(A) 75
Go out A 3t € [0, tena], [y](£,v') N Hull(A) =
Has reached A* [y](tend; v') N Hull(A) # 0
Finished in A [y](tend, V') C Int(A)

*. shall be used in negative form

24 /33

Differential constraint satisfaction problems
Simulation of a closed-loop system with safety
A simple dynamics of a car with a Pl controller

kp(10.0—y)+kjw—50.0y —0.4y>

) = m with m € [990,1010], k, = 1440, k; = 35
100 —y

w

and a safety propriety
vt y(t) € [0,11]

Failure

v([0,0.0066443]) € [—0.00143723,0.0966555]

25/33

Differential constraint satisfaction problems

Simulation of a closed-loop system with safety property
#include "ibex.h"

using namespace ibex;

int main(){
const int n = 2;
Variable y(n);

IntervalVector state(n);
state[0] = 0.0; state[1] = 0.0;

// Dynamique d’une voiture avec incertitude sur sa masse + Pl

Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))
/ Interval (990, 1010),
10.0 - y[0]));

ivp_ode vdp = ivp_ode(ydot, 0.0, state);

simulation simu = simulation(&vdp, 10.0, RK4, le-6);
simu.run_simulation();

// verification de surete
IntervalVector safe(n);
safe[0] = Interval(0.0, 11.0);
bool flag = simu.stayed_in (safe);
if (!flag) {
std::cerr << "error safety violation" << std:iendl;

return 0;

}

26 /33

Differential constraint satisfaction problems

Case study — tuning PI controller [SYNCOP'15]

A cruise control system two formulations:

@ uncertain linear dynamics;

@ uncertain non-linear dynamics

u — bv — 0.5pCdAv?
m

vV =

with
@ m the mass of the vehicle
u the control force defined by a Pl controller

bv is the rolling resistance

Farsg = 0.5pCdAV? is the aerodynamic drag (p the air density, CdA the drag
coefficient depending of the vehicle area)

27 /33

Differential constraint satisfaction problems

Case study — paving results

Result of paving for both cases with
e K, € [1,4000] and K; € [1,120]
0 Veet = 10, teng = 15, & = 2% and € = 0.2 and minimal size=1
@ constraints: y(tend) € [r — a%, r + a%] and y(tend) € [—¢€, €]

Linear case (CPU ~ 10 minutes) Non-linear case (CPU =~ 80 minutes)
120

120

WWWMWMMWWMWMMMWMMWMMWM

4 000

80

60

« (I

I !IlIMWM
0+ T

0

40

1 000 2 000 3 000

T T
1 000 2 000

T !
3000 4000

28/33

Differential constraint satisfaction problems

Robust path planer — 1
Enhancement of Box-RRT (Pepy et al.) with
@ dedicated control law
@ cost function to minimize distance (Box-RRT¥)

dK > 0 and u € U such that
Vso € Sinit, V S(KAt;S0) € Sgoa and Vt € [0, KAt], s(t;S0) € Stree,

29/33

Differential constraint satisfaction problems

Robust path planer — 2

Experimental table with a fully mastered environment using ROS

/ VAR Local coordinate system
Transmiter / l \

1 Unique identifier i
S~
1
@ Receiver
| Workspace area

~Global coordinate system

Implementation of Box-RRT* on embedded systems to
@ understand interaction between planner and controller

@ understand interaction between sensor and Box-RRT*

30/33

Differential constraint satisfaction problems

Ongoing project: safety for mobile robots
DGA MRIS project with Ecole polytechnique and ENSTA Bretagne

Autonomous vehicles

PLANNER LEVEL

Trajectory planning Sensor+Fusion+Analysis §—~—j
Lonlxu'

Mission

. Sensor+Fusion+Analysis
l‘—b Controller System =
e i Output

CONTROLLER LEVEL

Main goals of the project:

@ understand main pieces of the system and validate their behaviors
o validate the behaviors of the overall system.

31

33

Differential constraint satisfaction problems

and also student project in Robotics
ERL Emergency Robots, http://www.eurathlon.eu

Reactor building

Damage to pipes
Stopcocks
(underwater)

e
%
Underwater leak of
contaminated material
issing workers
* Debris blocking paths or entrances
Entry/launch points for land, air and sea robots

Team between both ENSTA

o ENSTA Bretagne: underwater and
aerial robots

o ENSTA ParisTech: ground robot

32/33

http://www.eurathlon.eu

Differential constraint satisfaction problems

Conclusion

DynIBEX is one ingredient of verification tools for cyber-physical systems.
It can handle uncertainties, can reason on sets of trajectories.

Also applied on

o Computation of viability kernel [SWIM'15]

Controller synthesis of sampled switched systems [SNR'16]
Parameter tuning in the design of mobile robots [MORSE'16]
Motion planning of UAV [under submission]

@ box-RRT* motion planning algorithm [under submission]

and enhanced with

@ methods to solve algebraic-differential equations [Reliable Computing’16]
@ a Box-QCSDP framework [IRC'17] and a contractor approach [SWIM'16]

Future work (a piece of)

@ model checking techniques: SAT modulo ODE

33/33

	Context
	Validated numerical integration
	Differential constraint satisfaction problems

