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Context

Robot's behavior

A mobile robot

Thanks to Google...

@ moves = Continuous-time dynamical system
o depending on parameters = (bounded) uncertainties
@ using sensors = (bounded) uncertainties

@ and actuators = control input
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Context

We want to do something with...

Global property: safety
Avoid obstacles, respect actuator limits, etc.

A goal

Reach an objective, perform a mission, etc.

Some requirements
For one scenario, one behavior (with numerical criteria)

= Some constraints on the robot’s behaviors

Classical problems in robotics

Controller synthesis, Design, Path planning, Fault detection, Safety analysis, etc.
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Context

A small cyber-physical system: closed-loop control

e(t) u(t)

Control

Physics

o Physics is usually defined by non-linear differential equations (with parameters)

x = f(x(t), u(t),p) , y(t) = g(x(t))

@ Control may be a continuous-time Pl algorithm
t
e(t) = r(t) — y(t) , u(t) = Kpe(t) + K,-/ e(r)dr
0

What is designing a controller?
Find values for K, and K; such that a given specification is satisfied.
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Context

Specification of PID Controllers

PID controller: requirements based on closed-loop response
T T

We observe the output of the plant

Overshoot: Less than 10%
Steady-state error: Less than 2% ——— |

Settling time: Less than 108 ——— |

Rise time: Less than 2s

00 2 4 6 8 10

Note: such properties come from the asymptotic behavior of the closed-loop system.

Classical method to study/verify closed-loop systems

Numerical simulations but
@ do not take into account that models are only an approximation;
@ produce approximate results.

and not adapted to deal with uncertainties
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Context

Synthesis and Verification methods for/of cyber-physical systems
Some requirements
@ Shall deal with discrete-time, continuous-time parts and their interactions
o Shall take into account uncertainties: model, data, resolution methods
@ Shall consider temporal properties

Example of properties (coming from
box-RRT*)

@ system stays in safe zone (Vt) or
“ finishes in goal zone (3t)

@ system avoids obstacle (3t)

for different quantification’s of initial

1Pepy et al. Reliable robust path planning, Journal of AMCS, 2009

‘ ‘ state-space (Vx or 3x), parameters, etc.
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Context

Our approach

Two antinomic facts
We want reliable results under uncertainties !

A known solution

Interval analysis works well for bounded uncertainties.

With dynamical systems 7
Validated simulation can help us.

Constraints on dynamical systems ?
A kind of temporal logic.
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Context

Set-based simulation

Definition
numerical simulation methods implemented with interval analysis methods

Goals

takes into account various uncertainties (bounded) or approximations to produce rigorous
results

Example
A simple nonlinear dynamics of a car

. —50.0v — 0.4v?
Ve —M

- with m € [990,1010] and v(0) € [10, 11]

One Implementation DynIBEX: a combination of CSP solver (IBEX') with validated
numerical integration methods based on Runge-Kutta

http://perso.ensta-paristech.fr/~chapoutot/dynibex/

1Gilles Chabert (EMN) et al. http://www.ibex-1ib.org
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http://perso.ensta-paristech.fr/~chapoutot/dynibex/
http://www.ibex-lib.org

Validated numerical integration

Validated numerical integration

Context
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Validated numerical integration

Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0, T]

y="F(y) with y(0)=yo
IVP has a unique solution y(t;yo) if f : R" — R" is Lipschitz in y
but for our purpose we suppose f smooth enough, i.e., of class C¥
Goal of numerical integration

o Compute a sequence of time instants: to =0< t1 < ---<t, =T

o Compute a sequence of values: yo,¥1,...,Yn such that

Vie[0,n], yi~y(tiyo) .
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Validated numerical integration

Validated solution of IVP for ODE

Goal of validated numerical integration

o Compute a sequence of time instants: thp =0< t1 < - - < t, =T

o Compute a sequence of values: [yo], [y1],- -, [yn] such that

Vie[0,n], [yi]>2y(tiyo) -

A two-step approach

/ \. Exact solution of y = f(y(t)) with y(0) € Vo
/ |

o\ Safe approximation at discrete time instants

i \_} Safe approximation between time instants
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Validated numerical integration

Simulation of an open loop system
A simple dynamics of a car
. —50.0y — 0.4y?
j= Y T A

with m € [990, 1010]
m

Simulation for 100 seconds with y(0) = 10

T
‘open-loop-trace.txt'u 1 ——
T2 —x—

The last step is y(100) = [0.0591842,0.0656237]
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Validated numerical integration

Simulation of an open loop system
int main(){

const int n = 1;
Variable y(n);

IntervalVector state(n);
state[0] = 10.0;

// Dynamique d’une voiture avec incertitude sur sa
masse
/ Function ydot(y, ( -50.0 * y[0] - 0.4 * y[0] * y[0])
N / Interval (990, 1010));
e ODE deflnltlon/ ivp_ode vdp = ivp_ode(ydot, 0.0, state);
o IVP definitio // Integration numerique ensembliste
tnition simulation simu = simulation(&vdp, 100, RK4, 1e-5);
simu.run_simulation();
o Parametric simulation
engine /_/For an export in order to plot
simu.exportld_yn("export-open-loop.txt", 0);

return 0;

}
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Validated numerical integration

Simulation of a closed-loop system
A simple dynamics of a car with a Pl controller

I kp(10.0—y)-+kjw—50.0y —0.4y> .
.= m with m € [990, 1010], k, = 1440, k; = 35
w 100 —y

Simulation for 10 seconds with y(0) = w(0) =0
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The last step is y(10) = [9.83413,9.83715]
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Validated numerical integration

Simulation of a closed-loop system
#include "ibex.h"

using namespace ibex;
int main(){

const int n = 2;
Variable y(n);

IntervalVector state(n);
state[0] = 0.0;
state[1] = 0.0;

// Dynamique d’une voiture avec incertitude sur sa masse + Pl

Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))
/ Interval (990, 1010),
10.0 - y[0]));

ivp_ode vdp = ivp_ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, 10.0, RK4, 1e-7);
simu.run_simulation();

simu.exportld_yn("export-closed-loop.txt", 0);

return O;

}
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Validated numerical integration

Simulation of an hybrid closed-loop system
A simple dynamics of a car with a discrete Pl controller

u(k) —50.0y — 0.4y?

y = — with m € [990, 1010]
i(t) = i(tk—1) + h(c — y(t)) with  h = 0.005
u(te) = ko(c — y(tx)) + kii(tx) with  k, = 1400, k; = 35

Simulation for 3 seconds with y(0) =0 and ¢ = 10

10

T T
‘closed-loop-hybrid-{race 1ty
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Validated numerical integration

Simulation of an hybrid closed-loop system

#include "ibex.h"

using namespace ibex;
using namespace std;

int main(){
const int n = 2; Variable y(n);
Affine2Vector state(n);
state[0] = 0.0; state[1] = 0.0;

double t = 0; const double sampling = 0.005;
Affine2 integral(0.0);

while (t < 3.0) { @ Manual handling of

Affine2 goal(10.0); . . .
Affine2 error = goal - state[0)]; discrete-time evolution

// Controleur Pl discret

integral = integral + sampling * error;
Affine2 u = 1400.0 * error + 35.0 * integral;
state[1] = u;

// Dynamique d’une voiture avec incertitude sur sa masse
Function ydot(y, Return((y[1] - 50.0 * y[0] - 0.4 * y[0] * y[0])

/ Interval (990, 1010), Interval(0.0)));
ivp-ode vdp = ivp_ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, sampling, RK4, le-6);
simu.run_simulation();

// Mise a jour du temps et des etats

state = simu.get_last(); t += sampling;
) g 0 pling 18/33



Differential constraint satisfaction problems

Differential constraint satisfaction problems
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Differential constraint satisfaction problems
Basics of interval analysis

@ Interval arithmetic (defined also for: sin, cos, etc.):
[ X1+ Iy, ¥] =lx + v, X +¥]
[ X] [y, y] =[min{x * y, x . X * y, X v},

max{x * y, X * ¥, X x y,X * y}]

o Let an inclusion function [f] : IR — IR for f : R — R is defined as:

{f(a) | 3a € [N} < [FI([1N)
with a € R and | € IR.

Example of inclusion function: Natural inclusion
XI=[12, []=[-13] and f(x,y)=xy+x
[F1([x], Y1) = [x] * Y] + [x]

=[1,2] % [-1,3] +[1,2] = [-2,6] + [1,2] = [-1,8]
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Differential constraint satisfaction problems

Numerical Constraint Satisfaction Problems

NCSP
A NCSP (V,D,C) is defined as follows:
o V:={wv,..., vy} is a finite set of variables which can also be represented by the
vector v;
@ D:={[w],...,[va]} is a set of intervals such that [v;] contains all possible values of
v;. It can be represented by a box [v] gathering all [vi];
o C:={c1,...,cm} is a set of constraints of the form ¢;(v) = fi(v) =0 or

ci(v)=gi(v) <0, with i :R" > R, g : R" > Rfor 1 <i<m.
Note: Constraints C are interpreted as a conjunction of equalities and inequalities.

Remark: The solution of a NCSP is a valuation of v ranging in [v] and satisfying the
constraints C.

Example
oV ={x}
e D, = {[17 10]} — x € [1,1.09861]

o C= {x exp(x) < 3}
Remark: if [v] = () then the problem is not satistafiable
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Differential constraint satisfaction problems
IBEX in one slide
#include "ibex.h"

using namespace std,;
using namespace ibex;

int main() {
o Easy definition of Variable x;
functions Function f (x, x*exp(x));
NumConstraint c1(x, f(x) <= 3.0);
@ Numerical constraints _

CtcFwdBwd contractor(cl);

@ Pruning methods IntervalVector box(1);

box[0]=Interval(1,10);

@ Interval evaluation of
) cout << "f" << box << " = " << f.eval(box) << endl;
functions contractor.contract(box);
cout << "after contraction box = " << box << endl,
}

IBEX is also a parametric solver of constraints, an optimizer, etc.
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Differential constraint satisfaction problems

Quantified Constraint Satisfaction Differential Problems

S=y="~f(y(t),u(t),p)

QCSDP
Let S be a differential system and tend € R4 the time limit. A QCSDP is a NCSP defined

by

@ a set of variables V including at least t, a vector yo, p, u
We represent these variables by the vector v;

@ an initial domain D containing at least [0, tend], Yo, U, and P;
@ a set of constraints C = {c1,..., c.} composed of predicates over sets, that is,
constraints of the form

¢ = Qv eDifi(v)o A, Vi<i<e

with Q € {3,V}, i : p(RIV) — o(R7) stands for non-linear arithmetic expressions
defined over variables v and solution of differential system S, y(t; yo, p,u) = y(v),
o€ {<,Ng} and A C RY where g > 0.

Note: we follow the same approach that Goldsztejn et al.?

2Including ODE Based Constraints in the Standard CP Framework, CP10
23
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Differential constraint satisfaction problems

DynIBEX: a Box-QCSDP solver with restrictions

Solving arbitrary quantified constraints is hard!

We focus on particular problems of robotics involving quantifiers
@ Robust controller synthesis: Ju, Vp, Vyo + temporal constraints

@ Parameter synthesis: Jp, Vu, Vyo + temporal constraints
@ etc.

We also defined a set of temporal constraints useful to analyze/design robotic application.

Verbal property QCSDP translation
Stay in A Vt € [0, tend], [y](t,Vv") C Int(A)
In Aatr 3t € [0, tena], [y](t,v') C Int(A)
Has crossed A* | 3t € [0, tena], [y](t,v') N Hull(A) 75
Go out A 3t € [0, tena], [y](£,v') N Hull(A) =
Has reached A* [y](tend; v') N Hull(A) # 0
Finished in A [y](tend, V') C Int(A)

*. shall be used in negative form
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Differential constraint satisfaction problems
Simulation of a closed-loop system with safety
A simple dynamics of a car with a Pl controller

kp(10.0—y)+kjw—50.0y —0.4y>

) = m with  m € [990,1010], k, = 1440, k; = 35
100 —y

w

and a safety propriety
vt y(t) € [0,11]

Failure

v([0,0.0066443]) € [—0.00143723,0.0966555]
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Differential constraint satisfaction problems

Simulation of a closed-loop system with safety property
#include "ibex.h"

using namespace ibex;

int main(){
const int n = 2;
Variable y(n);

IntervalVector state(n);
state[0] = 0.0; state[1] = 0.0;

// Dynamique d’une voiture avec incertitude sur sa masse + Pl

Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))
/ Interval (990, 1010),
10.0 - y[0]));

ivp_ode vdp = ivp_ode(ydot, 0.0, state);

simulation simu = simulation(&vdp, 10.0, RK4, le-6);
simu.run_simulation();

// verification de surete
IntervalVector safe(n);
safe[0] = Interval(0.0, 11.0);
bool flag = simu.stayed_in (safe);
if (!flag) {
std::cerr << "error safety violation" << std:iendl;

return 0;

}
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Differential constraint satisfaction problems

Case study — tuning PI controller [SYNCOP'15]

A cruise control system two formulations:

@ uncertain linear dynamics;

@ uncertain non-linear dynamics

u — bv — 0.5pCdAv?
m

vV =

with
@ m the mass of the vehicle
u the control force defined by a Pl controller

bv is the rolling resistance

Farsg = 0.5pCdAV? is the aerodynamic drag (p the air density, CdA the drag
coefficient depending of the vehicle area)
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Differential constraint satisfaction problems

Case study — paving results

Result of paving for both cases with
e K, € [1,4000] and K; € [1,120]
0 Veet = 10, teng = 15, & = 2% and € = 0.2 and minimal size=1
@ constraints: y(tend) € [r — a%, r + a%] and  y(tend) € [—¢€, €]

Linear case (CPU ~ 10 minutes) Non-linear case (CPU =~ 80 minutes)
120

120

WWWMWMMWWMWMMMWMMWMMWM

4 000

80

60

« (I

I !IlIMWM
0+ T

0

40

1 000 2 000 3 000

T T
1 000 2 000

T !
3000 4000

28/33



Differential constraint satisfaction problems

Robust path planer — 1
Enhancement of Box-RRT (Pepy et al.) with
@ dedicated control law
@ cost function to minimize distance (Box-RRT¥)

dK > 0 and u € U such that
Vso € Sinit, V S(KAt;S0) € Sgoa and Vt € [0, KAt], s(t;S0) € Stree,
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Differential constraint satisfaction problems

Robust path planer — 2

Experimental table with a fully mastered environment using ROS

/ VAR Local coordinate system
Transmiter / l \

1 Unique identifier i
S~
1
@ Receiver
| Workspace area

~Global coordinate system

Implementation of Box-RRT* on embedded systems to
@ understand interaction between planner and controller

@ understand interaction between sensor and Box-RRT*

30/33



Differential constraint satisfaction problems

Ongoing project: safety for mobile robots
DGA MRIS project with Ecole polytechnique and ENSTA Bretagne

Autonomous vehicles

PLANNER LEVEL

Trajectory planning Sensor+Fusion+Analysis §—~—j
Lonlxu'

Mission

. Sensor+Fusion+Analysis
l‘—b Controller System =
e i Output

CONTROLLER LEVEL

Main goals of the project:

@ understand main pieces of the system and validate their behaviors
o validate the behaviors of the overall system.

31

33



Differential constraint satisfaction problems

and also student project in Robotics
ERL Emergency Robots, http://www.eurathlon.eu

Reactor building

Damage to pipes
Stopcocks
(underwater)

e
%
Underwater leak of
contaminated material
issing workers
* Debris blocking paths or entrances
Entry/launch points for land, air and sea robots

Team between both ENSTA

o ENSTA Bretagne: underwater and
aerial robots

o ENSTA ParisTech: ground robot
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Differential constraint satisfaction problems

Conclusion

DynIBEX is one ingredient of verification tools for cyber-physical systems.
It can handle uncertainties, can reason on sets of trajectories.

Also applied on

o Computation of viability kernel [SWIM'15]

Controller synthesis of sampled switched systems [SNR'16]
Parameter tuning in the design of mobile robots [MORSE'16]
Motion planning of UAV [under submission]

@ box-RRT* motion planning algorithm [under submission]

and enhanced with

@ methods to solve algebraic-differential equations [Reliable Computing’16]
@ a Box-QCSDP framework [IRC'17] and a contractor approach [SWIM'16]

Future work (a piece of)

@ model checking techniques: SAT modulo ODE
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