
A CSP Approach to Design CPS

Alexandre Chapoutot

joint work with Julien Alexandre dit Sandretto and Olivier Mullier, Adina M. Panchea, et al.
U2IS, ENSTA ParisTech, Palaiseau, France

SHARC
June 30, 2017

Context

Context

Context

Validated numerical integration

Differential constraint satisfaction problems

2 / 33

Context

Robot’s behavior

A mobile robot

Thanks to Google...

moves ⇒ Continuous-time dynamical system
depending on parameters ⇒ (bounded) uncertainties
using sensors ⇒ (bounded) uncertainties
and actuators ⇒ control input

3 / 33

Context

We want to do something with...

Global property: safety
Avoid obstacles, respect actuator limits, etc.

A goal
Reach an objective, perform a mission, etc.

Some requirements
For one scenario, one behavior (with numerical criteria)

⇒ Some constraints on the robot’s behaviors

Classical problems in robotics
Controller synthesis, Design, Path planning, Fault detection, Safety analysis, etc.

4 / 33

Context

A small cyber-physical system: closed-loop control

Control

Physics

r(t) e(t) u(t)
−

y(t)

Physics is usually defined by non-linear differential equations (with parameters)

ẋ = f (x(t), u(t), p) , y(t) = g(x(t))

Control may be a continuous-time PI algorithm

e(t) = r(t)− y(t) , u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ

What is designing a controller?
Find values for Kp and Ki such that a given specification is satisfied.

5 / 33

Context

Specification of PID Controllers
PID controller: requirements based on closed-loop response

We observe the output of the plant

Overshoot: Less than 10%
Steady-state error: Less than 2%
Settling time: Less than 10s
Rise time: Less than 2s

0 2 4 6 8 100

1

Note: such properties come from the asymptotic behavior of the closed-loop system.

Classical method to study/verify closed-loop systems
Numerical simulations but

do not take into account that models are only an approximation;
produce approximate results.

and not adapted to deal with uncertainties
6 / 33

Context

Synthesis and Verification methods for/of cyber-physical systems
Some requirements

Shall deal with discrete-time, continuous-time parts and their interactions
Shall take into account uncertainties: model, data, resolution methods
Shall consider temporal properties

Example of properties (coming from
box-RRT1)

system stays in safe zone (∀t) or
finishes in goal zone (∃t)
system avoids obstacle (∃t)

for different quantification’s of initial
state-space (∀x or ∃x), parameters, etc.

1Pepy et al. Reliable robust path planning, Journal of AMCS, 2009
7 / 33

Context

Our approach

Two antinomic facts
We want reliable results under uncertainties !

A known solution
Interval analysis works well for bounded uncertainties.

With dynamical systems ?
Validated simulation can help us.

Constraints on dynamical systems ?
A kind of temporal logic.

8 / 33

Context

Set-based simulation
Definition
numerical simulation methods implemented with interval analysis methods

Goals
takes into account various uncertainties (bounded) or approximations to produce rigorous
results

Example
A simple nonlinear dynamics of a car

v̇ = −50.0v − 0.4v 2

m with m ∈ [990, 1010] and v(0) ∈ [10, 11]

One Implementation DynIBEX: a combination of CSP solver (IBEX1) with validated
numerical integration methods based on Runge-Kutta

http://perso.ensta-paristech.fr/˜chapoutot/dynibex/
1Gilles Chabert (EMN) et al. http://www.ibex-lib.org

9 / 33

http://perso.ensta-paristech.fr/~chapoutot/dynibex/
http://www.ibex-lib.org

Validated numerical integration

Validated numerical integration

Context

Validated numerical integration

Differential constraint satisfaction problems

10 / 33

Validated numerical integration

Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0,T]

ẏ = f (y) with y(0) = y0

IVP has a unique solution y(t; y0) if f : Rn → Rn is Lipschitz in y
but for our purpose we suppose f smooth enough, i.e., of class C k

Goal of numerical integration

Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = T
Compute a sequence of values: y0, y1, . . . , yn such that

∀i ∈ [0, n], yi ≈ y(ti ; y0) .

11 / 33

Validated numerical integration

Validated solution of IVP for ODE

Goal of validated numerical integration

Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = T
Compute a sequence of values: [y0], [y1], . . . , [yn] such that

∀i ∈ [0, n], [yi] 3 y(ti ; y0) .

A two-step approach

Exact solution of ẏ = f (y(t)) with y(0) ∈ Y0

Safe approximation at discrete time instants
Safe approximation between time instants

12 / 33

Validated numerical integration

Simulation of an open loop system
A simple dynamics of a car

ẏ = −50.0y − 0.4y 2

m with m ∈ [990, 1010]

Simulation for 100 seconds with y(0) = 10

The last step is y(100) = [0.0591842, 0.0656237]
13 / 33

Validated numerical integration

Simulation of an open loop system

ODE definition

IVP definition

Parametric simulation
engine

int main(){

const int n = 1;
Variable y(n);

IntervalVector state(n);
state[0] = 10.0;

// Dynamique d’une voiture avec incertitude sur sa
masse

Function ydot(y, (-50.0 * y[0] - 0.4 * y[0] * y[0])
/ Interval (990, 1010));

ivp ode vdp = ivp ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, 100, RK4, 1e-5);
simu.run simulation();

//For an export in order to plot
simu.export1d yn("export-open-loop.txt", 0);

return 0;
}

14 / 33

Validated numerical integration

Simulation of a closed-loop system
A simple dynamics of a car with a PI controller(

ẏ
ẇ

)
=
(

kp (10.0−y)+ki w−50.0y−0.4y2

m
10.0− y

)
with m ∈ [990, 1010], kp = 1440, ki = 35

Simulation for 10 seconds with y(0) = w(0) = 0

The last step is y(10) = [9.83413, 9.83715]
15 / 33

Validated numerical integration

Simulation of a closed-loop system
#include "ibex.h"

using namespace ibex;

int main(){

const int n = 2;
Variable y(n);

IntervalVector state(n);
state[0] = 0.0;
state[1] = 0.0;

// Dynamique d’une voiture avec incertitude sur sa masse + PI
Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))

/ Interval (990, 1010),
10.0 - y[0]));

ivp ode vdp = ivp ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, 10.0, RK4, 1e-7);
simu.run simulation();

simu.export1d yn("export-closed-loop.txt", 0);

return 0;
}

16 / 33

Validated numerical integration

Simulation of an hybrid closed-loop system
A simple dynamics of a car with a discrete PI controller

ẏ = u(k)− 50.0y − 0.4y 2

m with m ∈ [990, 1010]

i(tk) = i(tk−1) + h(c − y(tk)) with h = 0.005
u(tk) = kp(c − y(tk)) + ki i(tk) with kp = 1400, ki = 35

Simulation for 3 seconds with y(0) = 0 and c = 10

17 / 33

Validated numerical integration

Simulation of an hybrid closed-loop system
#include "ibex.h"

using namespace ibex;
using namespace std;

int main(){
const int n = 2; Variable y(n);
Affine2Vector state(n);
state[0] = 0.0; state[1] = 0.0;

double t = 0; const double sampling = 0.005;
Affine2 integral(0.0);

while (t < 3.0) {
Affine2 goal(10.0);
Affine2 error = goal - state[0];

// Controleur PI discret
integral = integral + sampling * error;
Affine2 u = 1400.0 * error + 35.0 * integral;
state[1] = u;

// Dynamique d’une voiture avec incertitude sur sa masse
Function ydot(y, Return((y[1] - 50.0 * y[0] - 0.4 * y[0] * y[0])

/ Interval (990, 1010), Interval(0.0)));
ivp ode vdp = ivp ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, sampling, RK4, 1e-6);
simu.run simulation();

// Mise a jour du temps et des etats
state = simu.get last(); t += sampling;

}

return 0;
}

Manual handling of
discrete-time evolution

18 / 33

Differential constraint satisfaction problems

Differential constraint satisfaction problems

Context

Validated numerical integration

Differential constraint satisfaction problems

19 / 33

Differential constraint satisfaction problems

Basics of interval analysis

Interval arithmetic (defined also for: sin, cos, etc.):

[x , x] + [y , y] =[x + y , x + y]
[x , x] ∗ [y , y] =[min{x ∗ y , x ∗ y , x ∗ y , x ∗ y},

max{x ∗ y , x ∗ y , x ∗ y , x ∗ y}]

Let an inclusion function [f] : IR→ IR for f : R→ R is defined as:

{f (a) | ∃a ∈ [I]} ⊆ [f]([I])

with a ∈ R and I ∈ IR.

Example of inclusion function: Natural inclusion
[x] = [1, 2], [y] = [−1, 3], and f (x , y) = xy + x

[f]
(

[x], [y]
)

:= [x] ∗ [y] + [x]

= [1, 2] ∗ [−1, 3] + [1, 2] = [−2, 6] + [1, 2] = [−1, 8]

20 / 33

Differential constraint satisfaction problems

Numerical Constraint Satisfaction Problems
NCSP
A NCSP (V,D, C) is defined as follows:
V := {v1, . . . , vn} is a finite set of variables which can also be represented by the
vector v;
D := {[v1], . . . , [vn]} is a set of intervals such that [vi] contains all possible values of
vi . It can be represented by a box [v] gathering all [vi];
C := {c1, . . . , cm} is a set of constraints of the form ci (v) ≡ fi (v) = 0 or
ci (v) ≡ gi (v) 6 0, with fi : Rn → R, gi : Rn → R for 1 6 i 6 m.
Note: Constraints C are interpreted as a conjunction of equalities and inequalities.

Remark: The solution of a NCSP is a valuation of v ranging in [v] and satisfying the
constraints C.
Example

V = {x}
Dx =

{
[1, 10]

}
C =

{
x exp(x) 6 3

} =⇒ x ∈ [1, 1.09861]

Remark: if [v] = ∅ then the problem is not satistafiable
21 / 33

Differential constraint satisfaction problems

IBEX in one slide

Easy definition of
functions

Numerical constraints

Pruning methods

Interval evaluation of
functions

#include "ibex.h"

using namespace std;
using namespace ibex;

int main() {

Variable x;
Function f (x, x*exp(x));

NumConstraint c1(x, f(x) <= 3.0);

CtcFwdBwd contractor(c1);

IntervalVector box(1);
box[0]=Interval(1,10);

cout << "f" << box << " = " << f.eval(box) << endl;
contractor.contract(box);
cout << "after contraction box = " << box << endl;

}

IBEX is also a parametric solver of constraints, an optimizer, etc.

22 / 33

Differential constraint satisfaction problems

Quantified Constraint Satisfaction Differential Problems

S ≡ ẏ = f (y(t), u(t), p)

QCSDP
Let S be a differential system and tend ∈ R+ the time limit. A QCSDP is a NCSP defined
by

a set of variables V including at least t, a vector y0, p, u
We represent these variables by the vector v;
an initial domain D containing at least [0, tend], Y0, U , and P;
a set of constraints C = {c1, . . . , ce} composed of predicates over sets, that is,
constraints of the form

ci ≡ Qv ∈ Di .fi (v) � A, ∀1 6 i 6 e

with Q ∈ {∃,∀}, fi : ℘(R|V|)→ ℘(Rq) stands for non-linear arithmetic expressions
defined over variables v and solution of differential system S, y(t; y0, p, u) ≡ y(v),
� ∈ {⊆,∩∅} and A ⊆ Rq where q > 0.

Note: we follow the same approach that Goldsztejn et al.2

2Including ODE Based Constraints in the Standard CP Framework, CP10
23 / 33

Differential constraint satisfaction problems

DynIBEX: a Box-QCSDP solver with restrictions

Solving arbitrary quantified constraints is hard!

We focus on particular problems of robotics involving quantifiers
Robust controller synthesis: ∃u, ∀p, ∀y0 + temporal constraints
Parameter synthesis: ∃p, ∀u, ∀y0 + temporal constraints
etc.

We also defined a set of temporal constraints useful to analyze/design robotic application.

Verbal property QCSDP translation
Stay in A ∀t ∈ [0, tend], [y](t, v′) ⊆ Int(A)
In A at τ ∃t ∈ [0, tend], [y](t, v′) ⊆ Int(A)

Has crossed A* ∃t ∈ [0, tend], [y](t, v′) ∩ Hull(A) 6= ∅
Go out A ∃t ∈ [0, tend], [y](t, v′) ∩ Hull(A) = ∅

Has reached A* [y](tend, v′) ∩ Hull(A) 6= ∅
Finished in A [y](tend, v′) ⊆ Int(A)

*: shall be used in negative form

24 / 33

Differential constraint satisfaction problems

Simulation of a closed-loop system with safety
A simple dynamics of a car with a PI controller(

ẏ
ẇ

)
=
(

kp (10.0−y)+ki w−50.0y−0.4y2

m
10.0− y

)
with m ∈ [990, 1010], kp = 1440, ki = 35

and a safety propriety
∀t, y(t) ∈ [0, 11]

Failure

y([0, 0.0066443]) ∈ [−0.00143723, 0.0966555]

25 / 33

Differential constraint satisfaction problems

Simulation of a closed-loop system with safety property
#include "ibex.h"

using namespace ibex;

int main(){
const int n = 2;
Variable y(n);

IntervalVector state(n);
state[0] = 0.0; state[1] = 0.0;

// Dynamique d’une voiture avec incertitude sur sa masse + PI
Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))

/ Interval (990, 1010),
10.0 - y[0]));

ivp ode vdp = ivp ode(ydot, 0.0, state);

simulation simu = simulation(&vdp, 10.0, RK4, 1e-6);
simu.run simulation();

// verification de surete
IntervalVector safe(n);
safe[0] = Interval(0.0, 11.0);
bool flag = simu.stayed in (safe);
if (!flag) {

std::cerr << "error safety violation" << std::endl;
}

return 0;
} 26 / 33

Differential constraint satisfaction problems

Case study – tuning PI controller [SYNCOP’15]

A cruise control system two formulations:
uncertain linear dynamics;

v̇ = u − bv
m

uncertain non-linear dynamics

v̇ = u − bv − 0.5ρCdAv 2

m
with

m the mass of the vehicle
u the control force defined by a PI controller
bv is the rolling resistance
Fdrag = 0.5ρCdAv 2 is the aerodynamic drag (ρ the air density, CdA the drag
coefficient depending of the vehicle area)

27 / 33

Differential constraint satisfaction problems

Case study – paving results

Result of paving for both cases with
Kp ∈ [1, 4000] and Ki ∈ [1, 120]
vset = 10, tend = 15, α = 2% and ε = 0.2 and minimal size=1
constraints: y(tend) ∈ [r − α%, r + α%] and ẏ(tend) ∈ [−ε, ε]

Linear case (CPU ≈ 10 minutes) Non-linear case (CPU ≈ 80 minutes)

28 / 33

Differential constraint satisfaction problems

Robust path planer – 1
Enhancement of Box-RRT (Pepy et al.) with

dedicated control law
cost function to minimize distance (Box-RRT*)

∃K > 0 and u ∈ U such that
∀s0 ∈ Sinit, ∀ s(K∆t; s0) ∈ Sgoal and ∀t ∈ [0,K∆t], s(t; s0) ∈ Sfree,

29 / 33

Differential constraint satisfaction problems

Robust path planer – 2

Experimental table with a fully mastered environment using ROSConception et construction d’une plateforme d’expérimentation multi-robots

Figure III.2 – Diagrame phisique de la plateforme

Figure III.3 – Architecture initial pour 1 robot

On peut observer où faire le retour d’information, et comment les blocs interagissent
entre eux, d’abord le camera envoie des informations à Alvar qui envoie des information à un
correcteur pour filtrer l’information et où le GPS distribuera l’information respective a chaque
planificateur.

On a respecté le code de couleurs suivant, avec ses mélanges possibles, violet et orange.
— Dynamiques du système. Jaune
— Information du capteurs. Bleu
— Algorithme de commande. Vert
— Action de commande. Rouge

20 Sergio Nicolas Rodriguez Rodriguez / ENSTA ParisTech
Rapport non confidentiel et publiable sur internet

Implementation of Box-RRT* on embedded systems to
understand interaction between planner and controller
understand interaction between sensor and Box-RRT*

30 / 33

Differential constraint satisfaction problems

Ongoing project: safety for mobile robots
DGA MRIS project with École polytechnique and ENSTA Bretagne

Autonomous vehicles

Main goals of the project:
understand main pieces of the system and validate their behaviors
validate the behaviors of the overall system.

31 / 33

Differential constraint satisfaction problems

and also student project in Robotics
ERL Emergency Robots, http://www.eurathlon.eu

Team between both ENSTA
ENSTA Bretagne: underwater and
aerial robots
ENSTA ParisTech: ground robot

32 / 33

http://www.eurathlon.eu

Differential constraint satisfaction problems

Conclusion
DynIBEX is one ingredient of verification tools for cyber-physical systems.
It can handle uncertainties, can reason on sets of trajectories.

Also applied on

Computation of viability kernel [SWIM’15]
Controller synthesis of sampled switched systems [SNR’16]
Parameter tuning in the design of mobile robots [MORSE’16]
Motion planning of UAV [under submission]
box-RRT* motion planning algorithm [under submission]

and enhanced with
methods to solve algebraic-differential equations [Reliable Computing’16]
a Box-QCSDP framework [IRC’17] and a contractor approach [SWIM’16]

Future work (a piece of)

model checking techniques: SAT modulo ODE

33 / 33

	Context
	Validated numerical integration
	Differential constraint satisfaction problems

