A CSP Approach to Design CPS

Alexandre Chapoutot

joint work with Julien Alexandre dit Sandretto and Olivier Mullier, Adina M. Panchea, *et al.* U2IS, ENSTA ParisTech, Palaiseau, France

> SHARC June 30, 2017

Context

Context

Validated numerical integration

Differential constraint satisfaction problems

Robot's behavior

A mobile robot

Thanks to Google...

- $\bullet \ {\sf moves} \Rightarrow {\sf Continuous-time \ dynamical \ system}$
- depending on parameters \Rightarrow (bounded) uncertainties
- using sensors \Rightarrow (bounded) uncertainties
- $\bullet\,$ and actuators $\Rightarrow\,$ control input

We want to do something with...

Global property: safety

Avoid obstacles, respect actuator limits, etc.

A goal

Reach an objective, perform a mission, etc.

Some requirements

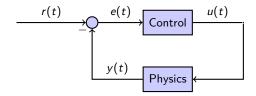
For one scenario, one behavior (with numerical criteria)

 \Rightarrow Some constraints on the robot's behaviors

Classical problems in robotics

Controller synthesis, Design, Path planning, Fault detection, Safety analysis, etc.

A small cyber-physical system: closed-loop control



• Physics is usually defined by non-linear differential equations (with parameters)

$$\dot{\mathbf{x}} = f(\mathbf{x}(t), u(t), \mathbf{p}) \ , \qquad \qquad \mathbf{y}(t) = g(\mathbf{x}(t))$$

• Control may be a continuous-time PI algorithm

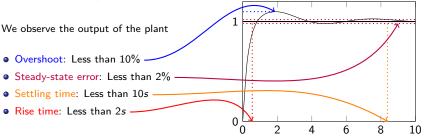
$$e(t) = r(t) - y(t) , \qquad u(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau$$

What is designing a controller?

Find values for K_p and K_i such that a given specification is satisfied.

Specification of PID Controllers

PID controller: requirements based on closed-loop response



Note: such properties come from the asymptotic behavior of the closed-loop system.

Classical method to study/verify closed-loop systems

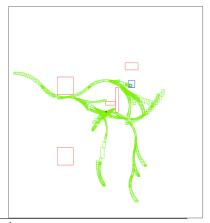
Numerical simulations but

- do not take into account that models are only an approximation;
- produce approximate results.

and not adapted to deal with uncertainties

Synthesis and Verification methods for/of cyber-physical systems Some requirements

- Shall deal with discrete-time, continuous-time parts and their interactions
- Shall take into account uncertainties: model, data, resolution methods
- Shall consider temporal properties



Example of properties (coming from box-RRT 1)

- system stays in safe zone (∀t) or finishes in goal zone (∃t)
- system avoids obstacle $(\exists t)$

for different quantification's of initial state-space ($\forall x \text{ or } \exists x$), parameters, etc.

¹Pepy et al. Reliable robust path planning, Journal of AMCS, 2009

Our approach

Two antinomic facts

We want reliable results under uncertainties !

A known solution

Interval analysis works well for bounded uncertainties.

With dynamical systems ?

Validated simulation can help us.

Constraints on dynamical systems ? A kind of temporal logic.

Set-based simulation

Definition

numerical simulation methods implemented with interval analysis methods

Goals

takes into account various uncertainties (bounded) or approximations to produce rigorous results

Example

A simple nonlinear dynamics of a car

$$\dot{v} = rac{-50.0v - 0.4v^2}{m}$$
 with $m \in [990, 1010]$ and $v(0) \in [10, 11]$

One Implementation DynIBEX: a combination of CSP solver (IBEX¹) with validated numerical integration methods based on Runge-Kutta

http://perso.ensta-paristech.fr/~chapoutot/dynibex/

¹Gilles Chabert (EMN) et al. http://www.ibex-lib.org

Validated numerical integration

Validated numerical integration

Context

Validated numerical integration

Differential constraint satisfaction problems

Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0, T]

$$\dot{\mathbf{y}} = f(\mathbf{y})$$
 with $\mathbf{y}(0) = \mathbf{y}_0$

IVP has a unique solution $\mathbf{y}(t; \mathbf{y}_0)$ if $f : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz in \mathbf{y} but for our purpose we suppose f smooth enough, *i.e.*, of class C^k

Goal of numerical integration

- Compute a sequence of time instants: $t_0 = 0 < t_1 < \cdots < t_n = T$
- Compute a sequence of values: $\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_n$ such that

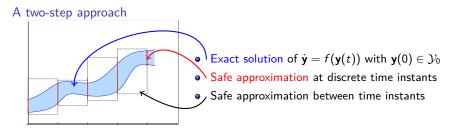
$$\forall i \in [0, n], \quad \mathbf{y}_i \approx \mathbf{y}(t_i; \mathbf{y}_0)$$
.

Validated solution of IVP for ODE

Goal of validated numerical integration

- Compute a sequence of time instants: $t_0 = 0 < t_1 < \cdots < t_n = T$
- \bullet Compute a sequence of values: $[\textbf{y}_0], [\textbf{y}_1], \dots, [\textbf{y}_n]$ such that

$$\forall i \in [0, n], \quad [\mathbf{y}_i] \ni \mathbf{y}(t_i; \mathbf{y}_0)$$
.

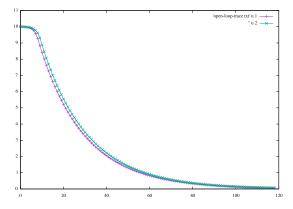


Simulation of an open loop system

A simple dynamics of a car

$$\dot{y} = \frac{-50.0y - 0.4y^2}{m}$$
 with $m \in [990, 1010]$

Simulation for 100 seconds with y(0) = 10



The last step is y(100) = [0.0591842, 0.0656237]

Validated numerical integration

Simulation of an open loop system

int main(){

const int n = 1; Variable y(n);

IntervalVector state(n); state[0] = 10.0;

 $/\!/$ Dynamique d'une voiture avec incertitude sur sa masse

→ Function ydot(y, (-50.0 * y[0] - 0.4 * y[0] * y[0]) / Interval (990, 1010));
→ ivp_ode vdp = ivp_ode(ydot, 0.0, state);

ODE definition IVP definition -

// Integration numerique ensembliste
simulation simu = simulation(&vdp, 100, RK4, 1e-5);
simu.run_simulation();

• Parametric simulation engine

//For an export in order to plot
simu.export1d_yn("export-open-loop.txt", 0);

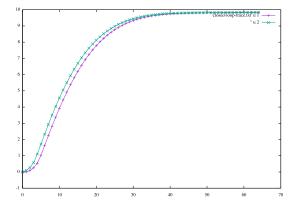
return 0;

Simulation of a closed-loop system

A simple dynamics of a car with a PI controller

$$\begin{pmatrix} \dot{y} \\ \dot{w} \end{pmatrix} = \begin{pmatrix} \frac{k_p(10.0-y) + k_i w - 50.0 y - 0.4 y^2}{m} \\ 10.0 - y \end{pmatrix} \text{ with } m \in [990, 1010], k_p = 1440, k_i = 35$$

Simulation for 10 seconds with y(0) = w(0) = 0



The last step is y(10) = [9.83413, 9.83715]

Simulation of a closed-loop system

#include "ibex.h"

using namespace ibex;

int main(){

const int n = 2; Variable y(n);

```
IntervalVector state(n);
state[0] = 0.0;
state[1] = 0.0;
```

```
// Integration numerique ensembliste
simulation simu = simulation(&vdp, 10.0, RK4, 1e-7);
simu.run_simulation();
```

```
simu.export1d_yn("export-closed-loop.txt", 0);
```

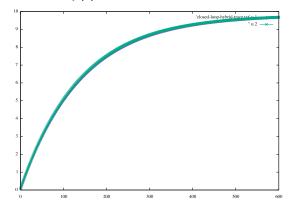
return 0;

Simulation of an hybrid closed-loop system

A simple dynamics of a car with a discrete PI controller

$$\dot{y} = \frac{u(k) - 50.0y - 0.4y^2}{m} \qquad \text{with} \quad m \in [990, 1010]$$
$$i(t_k) = i(t_{k-1}) + h(c - y(t_k)) \qquad \text{with} \quad h = 0.005$$
$$u(t_k) = k_p(c - y(t_k)) + k_i i(t_k) \qquad \text{with} \quad k_p = 1400, k_i = 35$$

Simulation for 3 seconds with y(0) = 0 and c = 10



Validated numerical integration

Simulation of an hybrid closed-loop system

#include "ibex.h"

using namespace ibex; using namespace std;

```
int main(){
    const int n = 2; Variable y(n);
    Affine2Vector state(n);
    state[0] = 0.0; state[1] = 0.0;
    double t = 0; const double sampling = 0.005;
    Affine2 integral(0.0);
    while (t < 3.0) {
        Affine2 goal(10.0);
        Affine2 reor = goal - state[0];
        // Controleur PI discret
        integral = integral + sampling * error;
        Affine2 u = 1400.0 * error + 35.0 * integral;
        state[1] = u;
        // Dynamique d'une voiture avec incertitude sur sa masse</pre>
```

Function ydot(y, Return((y[1] - 50.0 * y[0] - 0.4 * y[0] * y[0]) / Interval (990, 1010), Interval(0.0))); ivp_ode vdp = ivp_ode(ydot, 0.0, state);

```
// Integration numerique ensembliste
simulation simu = simulation(&vdp, sampling, RK4, 1e-6);
simu.run_simulation();
```

```
// Mise a jour du temps et des etats
state = simu.get_last(); t += sampling;
}
```

 Manual handling of discrete-time evolution

Differential constraint satisfaction problems

Context

Validated numerical integration

Differential constraint satisfaction problems

Basics of interval analysis

• Interval arithmetic (defined also for: sin, cos, etc.):

$$\begin{split} [\underline{x}, \overline{x}] + [\underline{y}, \overline{y}] = & [\underline{x} + \underline{y}, \overline{x} + \overline{y}] \\ [\underline{x}, \overline{x}] * [\underline{y}, \overline{y}] = & [\min\{\underline{x} * \underline{y}, \underline{x} * \overline{y}, \overline{x} * \underline{y}, \overline{x} * \overline{y}\}, \\ & \max\{\underline{x} * \underline{y}, \underline{x} * \overline{y}, \overline{x} * \overline{y}, \overline{x} * \underline{y}, \overline{x} * \overline{y}\} \end{split}$$

• Let an inclusion function $[f] : \mathbb{IR} \to \mathbb{IR}$ for $f : \mathbb{R} \to \mathbb{R}$ is defined as:

$$\{f(a) \mid \exists a \in [I]\} \subseteq [f]([I])$$

with $a \in \mathbb{R}$ and $I \in \mathbb{IR}$.

Example of inclusion function: Natural inclusion $[x] = [1, 2], \quad [y] = [-1, 3], \text{ and } f(x, y) = xy + x$ [f]([x], [y]) := [x] * [y] + [x]= [1, 2] * [-1, 3] + [1, 2] = [-2, 6] + [1, 2] = [-1, 8]

Numerical Constraint Satisfaction Problems

NCSP

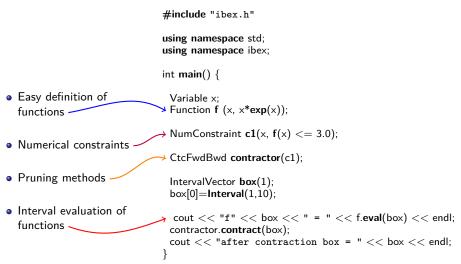
A NCSP $(\mathcal{V}, \mathcal{D}, \mathcal{C})$ is defined as follows:

- $\mathcal{V} := \{v_1, \dots, v_n\}$ is a finite set of variables which can also be represented by the vector \mathbf{v} ;
- $\mathcal{D} := \{[v_1], \dots, [v_n]\}$ is a set of intervals such that $[v_i]$ contains all possible values of v_i . It can be represented by a box $[\mathbf{v}]$ gathering all $[v_i]$;
- $C := \{c_1, \ldots, c_m\}$ is a set of constraints of the form $c_i(\mathbf{v}) \equiv f_i(\mathbf{v}) = 0$ or $c_i(\mathbf{v}) \equiv g_i(\mathbf{v}) \leq 0$, with $f_i : \mathbb{R}^n \to \mathbb{R}$, $g_i : \mathbb{R}^n \to \mathbb{R}$ for $1 \leq i \leq m$. Note: Constraints C are interpreted as a conjunction of equalities and inequalities.

Remark: The solution of a NCSP is a valuation of \bm{v} ranging in $[\bm{v}]$ and satisfying the constraints $\mathcal{C}.$

Example

• $\mathcal{V} = \{x\}$ • $\mathcal{D}_x = \{[1, 10]\} \implies x \in [1, 1.09861]$ • $\mathcal{C} = \{x \exp(x) \leq 3\}$ Remark: if $[\mathbf{v}] = \emptyset$ then the problem is not satistafiable



IBEX is also a parametric solver of constraints, an optimizer, etc.

Quantified Constraint Satisfaction Differential Problems

 $S \equiv \dot{\mathbf{y}} = f(\mathbf{y}(t), u(t), \mathbf{p})$

QCSDP

Let S be a differential system and $t_{\mathsf{end}} \in \mathbb{R}_+$ the time limit. A QCSDP is a NCSP defined by

- a set of variables \mathcal{V} including *at least t*, a vector \mathbf{y}_0 , \mathbf{p} , \mathbf{u} We represent these variables by the vector \mathbf{v} ;
- an initial domain \mathcal{D} containing at least $[0, t_{end}]$, \mathcal{Y}_0 , \mathcal{U} , and \mathcal{P} ;
- a set of constraints $\mathcal{C}=\{c_1,\ldots,c_e\}$ composed of predicates over sets, that is, constraints of the form

$$c_i \equiv Q \mathbf{v} \in \mathcal{D}_i.f_i(\mathbf{v}) \diamond \mathcal{A}, \qquad \forall 1 \leqslant i \leqslant e$$

with $Q \in \{\exists, \forall\}, f_i : \wp(\mathbb{R}^{|\mathcal{V}|}) \to \wp(\mathbb{R}^q)$ stands for non-linear arithmetic expressions defined over variables **v** and solution of differential system *S*, $\mathbf{y}(t; \mathbf{y}_0, \mathbf{p}, \mathbf{u}) \equiv \mathbf{y}(\mathbf{v})$, $\diamond \in \{\subseteq, \cap_{\emptyset}\}$ and $\mathcal{A} \subseteq \mathbb{R}^q$ where q > 0.

Note: we follow the same approach that Goldsztejn et al.²

²Including ODE Based Constraints in the Standard CP Framework, CP10

DynIBEX: a Box-QCSDP solver with restrictions

Solving arbitrary quantified constraints is hard!

We focus on particular problems of robotics involving quantifiers

- Robust controller synthesis: $\exists u, \forall p, \forall y_0 + temporal constraints$
- \bullet Parameter synthesis: $\exists \textbf{p}, \, \forall \textbf{u}, \, \forall \textbf{y}_0 + temporal \ constraints$

• etc.

We also defined a set of temporal constraints useful to analyze/design robotic application.

Verbal property	QCSDP translation
Stay in $\mathcal A$	$orall t \in [0, t_{end}], [\mathbf{y}](t, \mathbf{v}') \subseteq Int(\mathcal{A})$
In ${\cal A}$ at $ au$	$\exists t \in [0, t_{end}], [\mathbf{y}](t, \mathbf{v}') \subseteq Int(\mathcal{A})$
Has crossed $\mathcal{A}^{oldsymbol{st}}$	$\exists t \in [0, t_{end}], \ [\mathbf{y}](t, \mathbf{v}') \cap Hull(\mathcal{A}) \neq \emptyset$
Go out ${\mathcal A}$	$\exists t \in [0, t_{end}], \ [\mathbf{y}](t, \mathbf{v}') \cap Hull(\mathcal{A}) = \emptyset$
Has reached $\mathcal{A}^{oldsymbol{st}}$	$[\mathbf{y}](t_{end},\mathbf{v}')\capHull(\mathcal{A}) eq\emptyset$
Finished in ${\cal A}$	$[\textbf{y}](\textit{t}_{end},\textbf{v}')\subseteqInt(\mathcal{A})$

*: shall be used in negative form

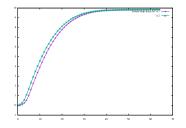
Simulation of a closed-loop system with safety

A simple dynamics of a car with a PI controller

$$\begin{pmatrix} \dot{y} \\ \dot{w} \end{pmatrix} = \begin{pmatrix} \frac{k_p(10.0-y)+k_iw-50.0y-0.4y^2}{m} \\ 10.0-y \end{pmatrix} \text{ with } m \in [990, 1010], k_p = 1440, k_i = 35$$

and a safety propriety

 $\forall t, y(t) \in [0, 11]$



Failure

 $y([0, 0.0066443]) \in [-0.00143723, 0.0966555]$

Simulation of a closed-loop system with safety property

```
#include "ibex.h"
```

using namespace ibex;

```
int main(){
 const int n = 2:
 Variable y(n);
 IntervalVector state(n);
 state[0] = 0.0; state[1] = 0.0;
 // Dynamique d'une voiture avec incertitude sur sa masse + PI
 Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))
                     / Interval (990, 1010),
                     10.0 - y[0]);
 ivp_ode vdp = ivp_ode(vdot, 0.0, state);
 simulation simu = simulation(\&vdp, 10.0, RK4, 1e-6);
 simu.run_simulation();
 // verification de surete
 IntervalVector safe(n);
 safe[0] = Interval(0.0, 11.0);
 bool flag = simu.stayed_in (safe);
 if (!flag) {
  std::cerr << "error safety violation" << std::endl:</pre>
 }
```

return 0;

Case study – tuning PI controller [SYNCOP'15]

A cruise control system two formulations:

• uncertain linear dynamics;

$$\dot{v} = \frac{u - bv}{m}$$

• uncertain non-linear dynamics

$$\dot{v} = \frac{u - bv - 0.5\rho C dA v^2}{m}$$

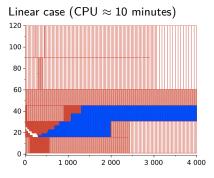
with

- *m* the mass of the vehicle
- *u* the control force defined by a PI controller
- bv is the rolling resistance
- $F_{drag} = 0.5\rho C dAv^2$ is the aerodynamic drag (ρ the air density, CdA the drag coefficient depending of the vehicle area)

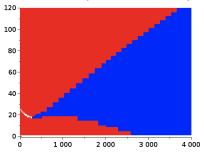
Case study - paving results

Result of paving for both cases with

- $K_{\rho} \in [1, 4000]$ and $K_i \in [1, 120]$
- $v_{\rm set} =$ 10, $t_{\rm end} =$ 15, lpha = 2% and $\epsilon =$ 0.2 and minimal size=1
- constraints: $y(t_{\textit{end}}) \in [r \alpha\%, r + \alpha\%]$ and $\dot{y}(t_{\textit{end}}) \in [-\epsilon, \epsilon]$



Non-linear case (CPU \approx 80 minutes)

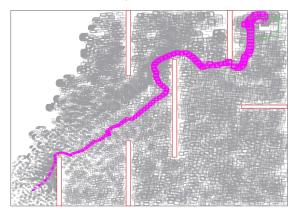


Robust path planer – 1

Enhancement of Box-RRT (Pepy et al.) with

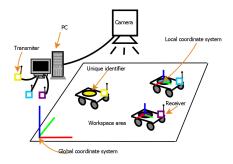
- dedicated control law
- cost function to minimize distance (Box-RRT*)

 $\exists K > 0 \text{ and } \mathbf{u} \in \mathbb{U} \text{ such that} \\ \forall \mathbf{s}_0 \in \mathbb{S}_{\text{init}}, \ \forall \ \mathbf{s}(K\Delta t; \mathbf{s}_0) \in \mathbb{S}_{\text{goal}} \text{ and } \forall t \in [0, K\Delta t], \ \mathbf{s}(t; \mathbf{s}_0) \in \mathbb{S}_{\text{free}},$



Robust path planer – 2

Experimental table with a fully mastered environment using ROS



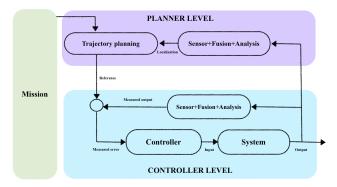
Implementation of Box-RRT* on embedded systems to

- understand interaction between planner and controller
- understand interaction between sensor and Box-RRT*

Ongoing project: safety for mobile robots

DGA MRIS project with École polytechnique and ENSTA Bretagne

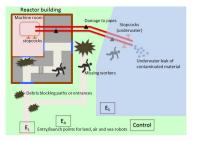
Autonomous vehicles



Main goals of the project:

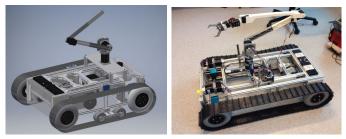
- understand main pieces of the system and validate their behaviors
- validate the behaviors of the overall system.

and also student project in Robotics ERL Emergency Robots, http://www.eurathlon.eu



Team between both ENSTA

- ENSTA Bretagne: underwater and aerial robots
- ENSTA ParisTech: ground robot



Conclusion

DynIBEX is one **ingredient** of verification tools for cyber-physical systems. It can **handle uncertainties**, can **reason on sets of trajectories**.

Also applied on

- Computation of viability kernel [SWIM'15]
- Controller synthesis of sampled switched systems [SNR'16]
- Parameter tuning in the design of mobile robots [MORSE'16]
- Motion planning of UAV [under submission]
- box-RRT* motion planning algorithm [under submission]

and enhanced with

- methods to solve algebraic-differential equations [Reliable Computing'16]
- a Box-QCSDP framework [IRC'17] and a contractor approach [SWIM'16]

Future work (a piece of)

• model checking techniques: SAT modulo ODE