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Context

Robot’s behavior

A mobile robot

Thanks to Google...

moves ⇒ Continuous-time dynamical system
depending on parameters ⇒ (bounded) uncertainties
using sensors ⇒ (bounded) uncertainties
and actuators ⇒ control input
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Context

We want to do something with...

Global property: safety
Avoid obstacles, respect actuator limits, etc.

A goal
Reach an objective, perform a mission, etc.

Some requirements
For one scenario, one behavior (with numerical criteria)

⇒ Some constraints on the robot’s behaviors

Classical problems in robotics
Controller synthesis, Design, Path planning, Fault detection, Safety analysis, etc.
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Context

A small cyber-physical system: closed-loop control

Control

Physics

r(t) e(t) u(t)
−

y(t)

Physics is usually defined by non-linear differential equations (with parameters)

ẋ = f (x(t), u(t), p) , y(t) = g(x(t))

Control may be a continuous-time PI algorithm

e(t) = r(t)− y(t) , u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ

What is designing a controller?
Find values for Kp and Ki such that a given specification is satisfied.
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Context

Specification of PID Controllers
PID controller: requirements based on closed-loop response

We observe the output of the plant

Overshoot: Less than 10%
Steady-state error: Less than 2%
Settling time: Less than 10s
Rise time: Less than 2s

0 2 4 6 8 100

1

Note: such properties come from the asymptotic behavior of the closed-loop system.

Classical method to study/verify closed-loop systems
Numerical simulations but

do not take into account that models are only an approximation;
produce approximate results.

and not adapted to deal with uncertainties
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Context

Synthesis and Verification methods for/of cyber-physical systems
Some requirements

Shall deal with discrete-time, continuous-time parts and their interactions
Shall take into account uncertainties: model, data, resolution methods
Shall consider temporal properties

Example of properties (coming from
box-RRT1)

system stays in safe zone (∀t) or
finishes in goal zone (∃t)
system avoids obstacle (∃t)

for different quantification’s of initial
state-space (∀x or ∃x), parameters, etc.

1Pepy et al. Reliable robust path planning, Journal of AMCS, 2009
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Context

Our approach

Two antinomic facts
We want reliable results under uncertainties !

A known solution
Interval analysis works well for bounded uncertainties.

With dynamical systems ?
Validated simulation can help us.

Constraints on dynamical systems ?
A kind of temporal logic.
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Context

Set-based simulation
Definition
numerical simulation methods implemented with interval analysis methods

Goals
takes into account various uncertainties (bounded) or approximations to produce rigorous
results

Example
A simple nonlinear dynamics of a car

v̇ = −50.0v − 0.4v 2

m with m ∈ [990, 1010] and v(0) ∈ [10, 11]

One Implementation DynIBEX: a combination of CSP solver (IBEX1) with validated
numerical integration methods based on Runge-Kutta

http://perso.ensta-paristech.fr/˜chapoutot/dynibex/
1Gilles Chabert (EMN) et al. http://www.ibex-lib.org
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Validated numerical integration

Initial Value Problem of Ordinary Differential Equations

Consider an IVP for ODE, over the time interval [0,T ]

ẏ = f (y) with y(0) = y0

IVP has a unique solution y(t; y0) if f : Rn → Rn is Lipschitz in y
but for our purpose we suppose f smooth enough, i.e., of class C k

Goal of numerical integration

Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = T
Compute a sequence of values: y0, y1, . . . , yn such that

∀i ∈ [0, n], yi ≈ y(ti ; y0) .
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Validated numerical integration

Validated solution of IVP for ODE

Goal of validated numerical integration

Compute a sequence of time instants: t0 = 0 < t1 < · · · < tn = T
Compute a sequence of values: [y0], [y1], . . . , [yn] such that

∀i ∈ [0, n], [yi ] 3 y(ti ; y0) .

A two-step approach

Exact solution of ẏ = f (y(t)) with y(0) ∈ Y0

Safe approximation at discrete time instants
Safe approximation between time instants
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Validated numerical integration

Simulation of an open loop system
A simple dynamics of a car

ẏ = −50.0y − 0.4y 2

m with m ∈ [990, 1010]

Simulation for 100 seconds with y(0) = 10

The last step is y(100) = [0.0591842, 0.0656237]
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Validated numerical integration

Simulation of an open loop system

ODE definition

IVP definition

Parametric simulation
engine

int main(){

const int n = 1;
Variable y(n);

IntervalVector state(n);
state[0] = 10.0;

// Dynamique d’une voiture avec incertitude sur sa
masse

Function ydot(y, ( -50.0 * y[0] - 0.4 * y[0] * y[0])
/ Interval (990, 1010));

ivp ode vdp = ivp ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, 100, RK4, 1e-5);
simu.run simulation();

//For an export in order to plot
simu.export1d yn("export-open-loop.txt", 0);

return 0;
}
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Validated numerical integration

Simulation of a closed-loop system
A simple dynamics of a car with a PI controller(

ẏ
ẇ

)
=
(

kp (10.0−y)+ki w−50.0y−0.4y2

m
10.0− y

)
with m ∈ [990, 1010], kp = 1440, ki = 35

Simulation for 10 seconds with y(0) = w(0) = 0

The last step is y(10) = [9.83413, 9.83715]
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Validated numerical integration

Simulation of a closed-loop system
#include "ibex.h"

using namespace ibex;

int main(){

const int n = 2;
Variable y(n);

IntervalVector state(n);
state[0] = 0.0;
state[1] = 0.0;

// Dynamique d’une voiture avec incertitude sur sa masse + PI
Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))

/ Interval (990, 1010),
10.0 - y[0]));

ivp ode vdp = ivp ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, 10.0, RK4, 1e-7);
simu.run simulation();

simu.export1d yn("export-closed-loop.txt", 0);

return 0;
}
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Validated numerical integration

Simulation of an hybrid closed-loop system
A simple dynamics of a car with a discrete PI controller

ẏ = u(k)− 50.0y − 0.4y 2

m with m ∈ [990, 1010]

i(tk ) = i(tk−1) + h(c − y(tk )) with h = 0.005
u(tk ) = kp(c − y(tk )) + ki i(tk ) with kp = 1400, ki = 35

Simulation for 3 seconds with y(0) = 0 and c = 10
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Validated numerical integration

Simulation of an hybrid closed-loop system
#include "ibex.h"

using namespace ibex;
using namespace std;

int main(){
const int n = 2; Variable y(n);
Affine2Vector state(n);
state[0] = 0.0; state[1] = 0.0;

double t = 0; const double sampling = 0.005;
Affine2 integral(0.0);

while (t < 3.0) {
Affine2 goal(10.0);
Affine2 error = goal - state[0];

// Controleur PI discret
integral = integral + sampling * error;
Affine2 u = 1400.0 * error + 35.0 * integral;
state[1] = u;

// Dynamique d’une voiture avec incertitude sur sa masse
Function ydot(y, Return((y[1] - 50.0 * y[0] - 0.4 * y[0] * y[0])

/ Interval (990, 1010), Interval(0.0)));
ivp ode vdp = ivp ode(ydot, 0.0, state);

// Integration numerique ensembliste
simulation simu = simulation(&vdp, sampling, RK4, 1e-6);
simu.run simulation();

// Mise a jour du temps et des etats
state = simu.get last(); t += sampling;

}

return 0;
}

Manual handling of
discrete-time evolution
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Differential constraint satisfaction problems
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Differential constraint satisfaction problems

Basics of interval analysis

Interval arithmetic (defined also for: sin, cos, etc.):

[x , x ] + [y , y ] =[x + y , x + y ]
[x , x ] ∗ [y , y ] =[min{x ∗ y , x ∗ y , x ∗ y , x ∗ y},

max{x ∗ y , x ∗ y , x ∗ y , x ∗ y}]

Let an inclusion function [f ] : IR→ IR for f : R→ R is defined as:

{f (a) | ∃a ∈ [I]} ⊆ [f ]([I])

with a ∈ R and I ∈ IR.

Example of inclusion function: Natural inclusion
[x ] = [1, 2], [y ] = [−1, 3], and f (x , y) = xy + x

[f ]
(

[x ], [y ]
)

:= [x ] ∗ [y ] + [x ]

= [1, 2] ∗ [−1, 3] + [1, 2] = [−2, 6] + [1, 2] = [−1, 8]
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Differential constraint satisfaction problems

Numerical Constraint Satisfaction Problems
NCSP
A NCSP (V,D, C) is defined as follows:
V := {v1, . . . , vn} is a finite set of variables which can also be represented by the
vector v;
D := {[v1], . . . , [vn]} is a set of intervals such that [vi ] contains all possible values of
vi . It can be represented by a box [v] gathering all [vi ];
C := {c1, . . . , cm} is a set of constraints of the form ci (v) ≡ fi (v) = 0 or
ci (v) ≡ gi (v) 6 0, with fi : Rn → R, gi : Rn → R for 1 6 i 6 m.
Note: Constraints C are interpreted as a conjunction of equalities and inequalities.

Remark: The solution of a NCSP is a valuation of v ranging in [v] and satisfying the
constraints C.
Example

V = {x}
Dx =

{
[1, 10]

}
C =

{
x exp(x) 6 3

} =⇒ x ∈ [1, 1.09861]

Remark: if [v] = ∅ then the problem is not satistafiable
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Differential constraint satisfaction problems

IBEX in one slide

Easy definition of
functions

Numerical constraints

Pruning methods

Interval evaluation of
functions

#include "ibex.h"

using namespace std;
using namespace ibex;

int main() {

Variable x;
Function f (x, x*exp(x));

NumConstraint c1(x, f(x) <= 3.0);

CtcFwdBwd contractor(c1);

IntervalVector box(1);
box[0]=Interval(1,10);

cout << "f" << box << " = " << f.eval(box) << endl;
contractor.contract(box);
cout << "after contraction box = " << box << endl;

}

IBEX is also a parametric solver of constraints, an optimizer, etc.
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Differential constraint satisfaction problems

Quantified Constraint Satisfaction Differential Problems

S ≡ ẏ = f (y(t), u(t), p)

QCSDP
Let S be a differential system and tend ∈ R+ the time limit. A QCSDP is a NCSP defined
by

a set of variables V including at least t, a vector y0, p, u
We represent these variables by the vector v;
an initial domain D containing at least [0, tend], Y0, U , and P;
a set of constraints C = {c1, . . . , ce} composed of predicates over sets, that is,
constraints of the form

ci ≡ Qv ∈ Di .fi (v) � A, ∀1 6 i 6 e

with Q ∈ {∃,∀}, fi : ℘(R|V|)→ ℘(Rq) stands for non-linear arithmetic expressions
defined over variables v and solution of differential system S, y(t; y0, p, u) ≡ y(v),
� ∈ {⊆,∩∅} and A ⊆ Rq where q > 0.

Note: we follow the same approach that Goldsztejn et al.2

2Including ODE Based Constraints in the Standard CP Framework, CP10
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Differential constraint satisfaction problems

DynIBEX: a Box-QCSDP solver with restrictions

Solving arbitrary quantified constraints is hard!

We focus on particular problems of robotics involving quantifiers
Robust controller synthesis: ∃u, ∀p, ∀y0 + temporal constraints
Parameter synthesis: ∃p, ∀u, ∀y0 + temporal constraints
etc.

We also defined a set of temporal constraints useful to analyze/design robotic application.

Verbal property QCSDP translation
Stay in A ∀t ∈ [0, tend], [y](t, v′) ⊆ Int(A)
In A at τ ∃t ∈ [0, tend], [y](t, v′) ⊆ Int(A)

Has crossed A* ∃t ∈ [0, tend], [y](t, v′) ∩ Hull(A) 6= ∅
Go out A ∃t ∈ [0, tend], [y](t, v′) ∩ Hull(A) = ∅

Has reached A* [y](tend, v′) ∩ Hull(A) 6= ∅
Finished in A [y](tend, v′) ⊆ Int(A)

*: shall be used in negative form
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Differential constraint satisfaction problems

Simulation of a closed-loop system with safety
A simple dynamics of a car with a PI controller(

ẏ
ẇ

)
=
(

kp (10.0−y)+ki w−50.0y−0.4y2

m
10.0− y

)
with m ∈ [990, 1010], kp = 1440, ki = 35

and a safety propriety
∀t, y(t) ∈ [0, 11]

Failure

y([0, 0.0066443]) ∈ [−0.00143723, 0.0966555]
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Differential constraint satisfaction problems

Simulation of a closed-loop system with safety property
#include "ibex.h"

using namespace ibex;

int main(){
const int n = 2;
Variable y(n);

IntervalVector state(n);
state[0] = 0.0; state[1] = 0.0;

// Dynamique d’une voiture avec incertitude sur sa masse + PI
Function ydot(y, Return ((1440.0 * (10.0 - y[0]) + 35.0 * y[1] - y[0] * (50.0 + 0.4 * y[0]))

/ Interval (990, 1010),
10.0 - y[0]));

ivp ode vdp = ivp ode(ydot, 0.0, state);

simulation simu = simulation(&vdp, 10.0, RK4, 1e-6);
simu.run simulation();

// verification de surete
IntervalVector safe(n);
safe[0] = Interval(0.0, 11.0);
bool flag = simu.stayed in (safe);
if (!flag) {

std::cerr << "error safety violation" << std::endl;
}

return 0;
} 26 / 33



Differential constraint satisfaction problems

Case study – tuning PI controller [SYNCOP’15]

A cruise control system two formulations:
uncertain linear dynamics;

v̇ = u − bv
m

uncertain non-linear dynamics

v̇ = u − bv − 0.5ρCdAv 2

m
with

m the mass of the vehicle
u the control force defined by a PI controller
bv is the rolling resistance
Fdrag = 0.5ρCdAv 2 is the aerodynamic drag (ρ the air density, CdA the drag
coefficient depending of the vehicle area)
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Differential constraint satisfaction problems

Case study – paving results

Result of paving for both cases with
Kp ∈ [1, 4000] and Ki ∈ [1, 120]
vset = 10, tend = 15, α = 2% and ε = 0.2 and minimal size=1
constraints: y(tend ) ∈ [r − α%, r + α%] and ẏ(tend ) ∈ [−ε, ε]

Linear case (CPU ≈ 10 minutes) Non-linear case (CPU ≈ 80 minutes)
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Differential constraint satisfaction problems

Robust path planer – 1
Enhancement of Box-RRT (Pepy et al.) with

dedicated control law
cost function to minimize distance (Box-RRT*)

∃K > 0 and u ∈ U such that
∀s0 ∈ Sinit, ∀ s(K∆t; s0) ∈ Sgoal and ∀t ∈ [0,K∆t], s(t; s0) ∈ Sfree,
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Differential constraint satisfaction problems

Robust path planer – 2

Experimental table with a fully mastered environment using ROSConception et construction d’une plateforme d’expérimentation multi-robots

Figure III.2 – Diagrame phisique de la plateforme

Figure III.3 – Architecture initial pour 1 robot

On peut observer où faire le retour d’information, et comment les blocs interagissent
entre eux, d’abord le camera envoie des informations à Alvar qui envoie des information à un
correcteur pour filtrer l’information et où le GPS distribuera l’information respective a chaque
planificateur.

On a respecté le code de couleurs suivant, avec ses mélanges possibles, violet et orange.
— Dynamiques du système. Jaune
— Information du capteurs. Bleu
— Algorithme de commande. Vert
— Action de commande. Rouge

20 Sergio Nicolas Rodriguez Rodriguez / ENSTA ParisTech
Rapport non confidentiel et publiable sur internet

Implementation of Box-RRT* on embedded systems to
understand interaction between planner and controller
understand interaction between sensor and Box-RRT*
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Differential constraint satisfaction problems

Ongoing project: safety for mobile robots
DGA MRIS project with École polytechnique and ENSTA Bretagne

Autonomous vehicles

Main goals of the project:
understand main pieces of the system and validate their behaviors
validate the behaviors of the overall system.
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Differential constraint satisfaction problems

and also student project in Robotics
ERL Emergency Robots, http://www.eurathlon.eu

Team between both ENSTA
ENSTA Bretagne: underwater and
aerial robots
ENSTA ParisTech: ground robot
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Differential constraint satisfaction problems

Conclusion
DynIBEX is one ingredient of verification tools for cyber-physical systems.
It can handle uncertainties, can reason on sets of trajectories.

Also applied on

Computation of viability kernel [SWIM’15]
Controller synthesis of sampled switched systems [SNR’16]
Parameter tuning in the design of mobile robots [MORSE’16]
Motion planning of UAV [under submission]
box-RRT* motion planning algorithm [under submission]

and enhanced with
methods to solve algebraic-differential equations [Reliable Computing’16]
a Box-QCSDP framework [IRC’17] and a contractor approach [SWIM’16]

Future work (a piece of)

model checking techniques: SAT modulo ODE
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