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Switched systems

A continuous switched system

m state x(t) € R”
m switching rule o(+) : RT — U
m finite set of (switched) modes U = {1,..., N}
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Switched systems

Switched systems

A continuous switched system

m state x(t) € R”
m switching rule o(+) : RT — U

m finite set of (switched) modes U = {1,..., N}

We focus on sampled switched systems:
given a sampling period 7 > 0, switchings will occur at times 7, 27, ...

Control Synthesis problem:

Find at each sampling time, the appropriate mode u € U (in function of
the value of x(t)) in order to make the system satisfy a certain property.
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Switched systems

Example: Two-room apartment
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Switched systems

Example: Two-room apartment

T, T,
heater 1 o,=0, heater 2
‘ - h
o (T,~T )y, (T, ~T)u
¢ (SO Uer * heat exchange
T

m Modes: <Zl> = <8> , (2) , <é) , G) ; sampling period T
2
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Switched systems

Example: Two-room apartment

T, T,

heater 1

¢ o3 Uor * heat exchange

Ty = £1(Ta(t), Ta(t))
Ty = fo(Ta(t), Tao(1))

i uy o 0 0 1 1 . . .
m Modes: <u2> = <0> , <1> , <0) , (1> ; sampling period T
. - 0 0 1
m A pattern 7 is a finite sequence of modes, e.g. 1) \o) 1
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Switched systems

Example: Two-room apartment

T, T,
heater 1
a (T, =T Ju,
¢ o, .., y heat exchange
el 9

Ty = £1(Ta(t), Ta(t))
Ty = fo(Ta(t), Tao(1))

m Modes: <Zl> = <8> , (2) , <é) , G) ; sampling period T
2

m A pattern 7 is a finite sequence of modes, e.g. ((2) : (8) : G))

m A state dependent control consists in selecting at each 7 a mode (or a
pattern) according to the current value of the state.
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Reachability and Stability Problems

We consider the state-dependent control problem of synthesizing o:

At each sampling time t, find the appropriate switched mode v € U
according to the current value of x, in order to achieve some objectives:
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Reachability and Stability Problems

We consider the state-dependent control problem of synthesizing o:

At each sampling time t, find the appropriate switched mode v € U
according to the current value of x, in order to achieve some objectives:

m reachability (given a target region R,
find a control which drives x to R, for

any x in Rjyjt)
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m reachability (given a target region R,
find a control which drives x to R, for
any x in Rjyjt) . Lo -/;\>
@ -
m stability (once in R, find a control -
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Reachability and Stability Problems

We consider the state-dependent control problem of synthesizing o:

At each sampling time t, find the appropriate switched mode v € U
according to the current value of x, in order to achieve some objectives:

m reachability (given a target region R,
find a control which drives x to R, for
any x in Rjyjt) . Lo -/f\>
@ -
m stability (once in R, find a control -
which always maintain x in a o R+e
neighborhood S = R + ¢ of R) R,,

NB: classic stabilization to an equilibrium point, impossible to achieve here
~ practical stability
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Focus on (R, S)-stability
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o /\ S
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(R,S)-stability

Focus on (R, S)-stability

Being given a recurrence (rectang.) set R and a safety (rectang.) set S,
we consider the state-dependent control problem of synthesizing o:

At each sampling time t, determine the switched mode u € U in function
of the value of x(t), in order to satisfy:

7,4
(R,S)-stability:
|f X(O) < R, then X(t) 22°C //\‘ S
P R
returns infinitely often < .’X
into R, and X
always stays in S. 18°C
18°C 22°C T

1
June 30, 2017 9 /30



(R,S)-stability

Principle of (R,S)-stability control synthesis (MINIMATOR)
[R. Soulat’s PhD, 2013]
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(R,S)-stability

Principle of (R,S)-stability control synthesis (MINIMATOR)
[R. Soulat’s PhD, 2013]

Cover R with a finite set of balls BY, BY, ... all € S
for each ball B?, find a pattern 7 of length k s.t. all the controlled
traj. x(t) with x(0) € BO, satisfy:

x(t)eS forallte[0,kr] A x(t)eR fort=kr
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Remarks on (R, S)-stability control

At each ball B (covering R), is assoc. a “returning pattern” 7 of Ig., say k

2 Model Predictive Control where the optimal strategy is estimated (online) for the
next ki steps (but strategy updated there at each step, # after ki steps: “receding
prediction horizon”). Note also that, here, control 71 is computed off line.
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Once returned in R at t = t;, the sensors give the value of x(t;), and a
control pattern m; (corresponding to a ball By 3 x(t1)) is applied;
the process iterates at next return time (t, = t; + ki 7).

Complexity: for n state dimension, N modes, K max. lg. of patterns,
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(note that N can be itself exp. in n, cf. room heating example)

12 Model Predictive Control where the optimal strategy is estimated (online) for the
next ki steps (but strategy updated there at each step, # after ki steps: “receding
prediction horizon”). Note also that, here, control 71 is computed off line.

L. Fribourg, A. Le Coént, et al. SHARC17 Conference June 30, 2017 11 /30



Remarks on (R, S)-stability control

At each ball B (covering R), is assoc. a “returning pattern” 7 of Ig., say k

Once returned in R at t = t;, the sensors give the value of x(t;), and a
control pattern m; (corresponding to a ball By 3 x(t1)) is applied;
the process iterates at next return time (t, = t; + ki 7).

Complexity: for n state dimension, N modes, K max. lg. of patterns,
2" palls (uniform covering, with d bisection depth):

2" NK possible tests of patterns

— exponential in n, d, K
(note that N can be itself exp. in n, cf. room heating example)

The length |m1| = ki can be seen as a time-horizon: the strategy is planned
for ki steps, then updated after k; steps.!

12 Model Predictive Control where the optimal strategy is estimated (online) for the
next ki steps (but strategy updated there at each step, # after ki steps: “receding
prediction horizon”). Note also that, here, control 71 is computed off line.
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(R,S)-stability

Key notion: one-step invariance

Given a ball B C S, find a mode u € U s.t. all the u-trajectories x(t)
with x(0) € BY, satisfy:

x(t)eS forall t €]0,7]
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(R,S)-stability

Key notion: one-step invariance

Given a ball B C S, find a mode u € U s.t. all the u-trajectories x(t)
with x(0) € BY, satisfy:

x(t)eS forall t €]0,7]

— requires a techn. of set-integration; we will use an Euler-based techn.
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Euler's method
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Euler's estimation method of x(t) (with x(t) = f(x(t)))

K(t) = X(to) + f(X(t0))(t — to)

A
A, 3 Ay
"1

Ao

—>

Suppose that, for the current step size 7 (or a sub-sampling size h), the
derivative is constant and equal to the derivative at the starting point
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Euler's method

Global error estimated with Lipschitz constant L

m The global error at t = ty + kh is equal to ||x(t) — X(t)||.
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Euler's method

Global error estimated with Lipschitz constant L

m The global error at t = ty + kh is equal to ||x(t) — X(t)||.
In case n =1, if f is Lipschitz cont. (||f(y) — f(x)|| < L[|y — x
then:

)

< — (t—to) _
error(t) 51 (e 1)

where L is the Lipschitz constant of f (and M an upper bound on ).
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then:

)

< — (t—to) _
error(t) 51 (e 1)

where L is the Lipschitz constant of f (and M an upper bound on ).

m In case of “stiff” equations, L can be very big.
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Euler's method

Global error estimated with Lipschitz constant L

m The global error at t = ty + kh is equal to ||x(t) — X(t)||.
In case n =1, if f is Lipschitz cont. (||f(y) — f(x)|| < L||y — x|),
then:

< — (t—to) _
error(t) 51 (e 1)

where L is the Lipschitz constant of f (and M an upper bound on ).

m In case of “stiff” equations, L can be very big.

We now consider a more appropriate constant A that leads to sharper
estimations of the Euler error.
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Euler's method

Dahlquist’s constant A (“one-sided Lipschitz” constant)

m )\ € Ris a constant s.t., for all x,y € S:

(F(y) = F(x),y = x) < Ally — x|

where (-, -) denote the scalar product of two vectors of R”

’Define V(x,x") =[x — x'||*; we have: 2/ < AV (hence V = Vpe'). So V is an

exponentially stable Lyapunov function when \ < 0.
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where (-, -) denote the scalar product of two vectors of R”
m ) can be < 0 (— contractivity)?;

even in case A > 0, in practice: A << L
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Euler's method

Dahlquist’s constant A (“one-sided Lipschitz” constant)

m )\ € Ris a constant s.t., for all x,y € S:

(F(y) = F(x),y = x) < Ally — x|

where (-, -) denote the scalar product of two vectors of R”

m ) can be < 0 (— contractivity)?;
even in case A > 0, in practice: A << L
— sharper (A-exponential based) estimation of Euler error

®m )\ can be computed using constraint optimization algorithms

’Define V(x,x") =[x — x'||*; we have: 2/ < AV (hence V = Vpe'). So V is an

exponentially stable Lyapunov function when \ < 0.
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Euler's method

Local error function §(-) estimated using constant A

Given an initial error dg of X(t) (i.e.: [[X(0) — x(0)|| < do),
the local E. error fn 6(-)  (s.t.: ||x(t) — x(t)|| < d(¢), for t € [0, 7])
can be defined (for each mode u) by:
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Euler's method

Local error function §(-) estimated using constant A

Given an initial error dg of X(t) (i.e.: [[X(0) — x(0)|| < do),
the local E. error fn 6(-)  (s.t.: ||x(t) — x(t)|| < d(¢), for t € [0, 7])
can be defined (for each mode u) by:

m if A <O
1
2t 2
_ 2 At - 2 = < At
5(t) <50e + 2(t+/\+ s (1-e )))
m ifA=0: .
5(t) = (5§e‘ L (- 2ty ol — 1))) 2
m ifA>0:

1
c? 2t 2 2
N 2 3\t 2 3Nt
5(t) = | dge +—(7t7—+—e 71)
® ( 0 322 30 0A2 ( )

with C = sup,cs L||f(x)].
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Euler's method

Local error function §(-) estimated using constant A

Given an initial error dg of X(t) (i.e.: [[X(0) — x(0)|| < do),
the local E. error fn 6(-)  (s.t.: ||x(t) — x(t)|| < d(¢), for t € [0, 7])
can be defined (for each mode u) by:

m if A <O
1
2t 2
_ 2 At - 2 = < At
5(t) <50e + 2(t+/\+ s (1-e )))
m ifA=0: .
5(t) = (5§e‘ L (- 2ty ol — 1))) 2
m ifA>0:

1
5(t) = <5ge3)\r+ % (71*27 3% N % (esmil)))z
with C = sup,cs L||f(x)].

see [A. Le Coént's Ph.D Thesis, 2017].
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One-step invariance using the E. error fn 4(+)
m Given a ball B = B(x%,6°%) C S, find a mode v s.t.:
x(t) € S forall x(0) € B t € [0,7]

ie: Bl=B(xL,8)cS with £=x0+f(X%7r and ! =4(7)
(assuming convexity of 4(-) on [0, 7]).
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Finding a control pattern 7 using J(+)

m Given a ball B® = B(X°,8°) C S, find a pattern 7 (of length k) s.t.:
x(t) € S forall x(0) € B, t € [0, k7]

ie:. B'=B(x%8)cS, ..., Bf=B(EKi)cS
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Euler's method

(R,S)-stable control synthesis using E. error fn §(-)

For each ball BY = B(%?,6%) C S covering R, find a pattern 7; (of

length k;) s.t.:

L. Fribourg, A. Le Coént, et al. SHARC17 Conference
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(R,S)-stable control synthesis using E. error fn §(-)

For each ball BY = B(%?,6%) C S covering R, find a pattern 7; (of
length k;) s.t.:
m Safety: B! = B(z!,01) c S,...,BY ' =B(x 1 6871 C S, and

1770 1
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(R,S)-stable control synthesis using E. error fn §(-)

For each ball BY = B(%?,6%) C S covering R, find a pattern 7; (of
length k;) s.t.:
. pl o1 1 ki—1 _ cki—1 cki—1
m Safety: B} = B(%X',0;)C S,....,B" " =B(X" 7,67 7)C S, and
m Recurrence: B,-k" = B()?,-’(",(Sf(") CR
June 30, 2017 20 / 30



Outline

Disturbance
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incremental Input-to-State Stability (i-1SS) in presence of
disturbance w € W

Consider:  x(t) = f(x(t),w(t)) with w(t)e W forall t €]0,7].

3In case A < 0, (H) expresses (a variant of) the fact that V(x,x’) = |[x — x’||? is an
i-ISS Lyapunov fn (see, e.g., [D. Angeli] [Hespanha et al.]). The constants X, can be
numerically computed using constrained optimization algos.
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incremental Input-to-State Stability (i-1SS) in presence of
disturbance w € W

Consider:  x(t) = f(x(t),w(t)) with w(t)e W forall t €]0,7].
The eq. x = f(x,w) with w € W is said to satisfy the
property of  i-ISS w.r.t disturbance set W if
FAeR3and v € Ryp sit.
(H) V¥x,x' €S, Vw,w' e W:

(Fx, w) = F(x', '), x = X') < Allx = X2 + v llx = X[ lw — w']].

3In case A < 0, (H) expresses (a variant of) the fact that V(x,x’) = |[x — x’||? is an

i-ISS Lyapunov fn (see, e.g., [D. Angeli] [Hespanha et al.]). The constants X, can be
numerically computed using constrained optimization algos.
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E. error function dyy(-) in presence of disturbance w € W

m Consider the ODE:
x(t) = f(x(t),w(t)) with w(t)e W forallte]l0,r7].
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E. error function dyy(-) in presence of disturbance w € W
The fn ow(+) (s.t: for all t € [0, 7], w(t) € W: ||x(t) — X(t)|| < dw(t))

can now be defined by:
if A <0,

2
Swit) = ( (©) (—(A)ztz —oat+ 26N — 2)

7(A)4
+ # (%ﬁv‘ (7At+e“ - 1)

2 2
N <(v) (WI/2? e

1/2
— 1)+ A(&%%“))) (1)

)2 2 1/2
oo (m (wi/2) (e3Ar71)+3/\(50)2e3)\t>>> @

—A
if A >0,
1 c 2.2 3At
5 =—— [ = (=9(n)?® —6xt 423 —2
w(t) (3A)3/2<x( (A)?¢ t+ 2e )
CH|W
+3) (L (—3At + 3 1)
A
A
if A =0,

sw(t) = (O (= —2t+2¢" —2) + (CoW| (=t + & = 1) +(V(IWI/2P(e =D+ e/
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Compositional (R,S)-stability using E. error fns 41 s,, 02 s,

)'(1 = fl(Xl,Xz)

)-(2 = f2(X17X2)
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Compositional (R,S)-stability using E. error fns 41 s,, 02 s,

)'(1 = fl(Xl,Xz)

)-(2 = )(2(X17 X2)
Suppose:

m (H1) %, = f1(x1, %) is i-ISS w.r.t disturbance xo € Sy, with A, ~.

m (H2) % = f2(x1, %) is i-ISS w.r.t disturbance x; € Sy, with A2, ~2.
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Compositional (R,S)-stability using E. error fns 41 s,, 02 s,

)'(1 = fl(Xl,Xz)

)-(2 = f2(X17X2)

Suppose:
m (H1) %, = f1(x1, %) is i-ISS w.r.t disturbance xo € Sy, with A, ~.

m (H2) % = f2(x1, %) is i-ISS w.r.t disturbance x; € Sy, with A2, ~2.

Theorem (compositionality): If

m o is an (Ry, S1)-stable control of xi(t) with S, as domain of disturbance,
using the E. error fn 61 s,(t) (bounding [[%1(t) — x1(t)|| in terms of (A},~41))

m 07 is an (Rz, S2)-stable control of x,(t) using the E. error fn d s, (t).
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Compositional (R,S)-stability using E. error fns 41 s,, 02 s,

).(1 = fl(Xl,X2)

)-(2 = f2(X1,X2)

Suppose:
m (H1) %, = f1(x1, %) is i-ISS w.r.t disturbance xo € Sy, with A, ~.

m (H2) % = f2(x1, %) is i-ISS w.r.t disturbance x; € Sy, with A2, ~2.

Theorem (compositionality): If

m o is an (Ry, S1)-stable control of xi(t) with S, as domain of disturbance,
using the E. error fn 61 s,(t) (bounding [[%1(t) — x1(t)|| in terms of (A},~41))

m 07 is an (Rz, S2)-stable control of x,(t) using the E. error fn d s, (t).
Then: 0 = 1|0z is an (Ry X Ry, S1 X Sp)-stable control of x(t) = (x1(t), x2(t)).
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[llustration of Distributed vs. Centralized Control
Centralized control synthesis

Example of a validated pattern of length 2 mapping the “ball” X into R
with S = R + a + ¢ as safety box:

m XCR
A T mx m XT=f(X)CS
m Xt = f,(XT)CR

|

F X m Pattern v - v depends on X
R+a
R+a+e
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Distrib. Control Synth. (of x; using S, as approx. of x;)

Target zone: R=R; X R»

m XiCR;
|
| m X, =1L(X,5%) C S
R m X=X %) C R
5 ] R+a m Pattern vy - v; depends only on X3
o =T
\Lﬂ/ R+a+¢
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Distrib. Control Synth. (of x, using S; as approx. of xj)

xi(t) =
XQ(t) =

s O (1), x (1))
2

i (x1(t), x2(2))

Target zone: R=R; X R»

;+ I - )VZ

N I — )

R+a

R+a+e

m Xo C R
[ ] X2+ = fuzz(sl,X2) S 52
m X =12(51,X7) € R

m Pattern uy - v» depends only on X5
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Application to distributed control of switched systems

225 225
~ous =28
Q Q
4 e
] E
g = g
3 3
2 3
5 5
= 205 = 205
[ room 1 [—room 1
room 2 20 room 2
[—room 3 —room 3
room4 room 4
195 1905
0 20 0 ) 500 0 20 00 500 0
Time(s) Time(s)

Simulations of centralized control (left) and distributed (right) for the 4-rooms problem [P.-J. Meyer's Ph.D., 2015]
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Application to distributed control of switched systems

225 225
s 5215
Q Q
2 2
E El
g o g =
3 3
g g
5 5
= 205 = 205
[—room 1 [—room 1
room 2 20 room 2
|—room 3 [—room 3
room 4 room4
105 195
h 200 w00 w00 w00 h 200 w0 500 00

Time(s) Time(s)

Simulations of centralized control (left) and distributed (right) for the 4-rooms problem [P.-J. Meyer's Ph.D., 2015]

m centralized synthesis (|7| = 2): sub-sampling h = 75,
2* modes, 256 balls — 48 s. of CPU time.
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Application to distributed control of switched systems

5 5
~ous =28
Q Q
4 e
3 El
s s
3 3
g 3
5 5
= 205 = 205
[ room 1 [—room 1
room 2 20 room 2
—room 3 —room 3
room 4 room 4
95 1905
o 200 ) 600 200 o 200 100 500 00
Time(s) Time(s)

Simulations of centralized control (left) and distributed (right) for the 4-rooms problem [P.-J. Meyer's Ph.D., 2015]

m centralized synthesis (|7| = 2): sub-sampling h = 75,
2* modes, 256 balls — 48 s. of CPU time.

m distributed synthesis (|7| = 2): sub-sampling h= {5 | h= 7,
22| 22 modes, 16 | 16 balls  — <1 s. of CPU time.
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Final remarks
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Fast, but may lack precision w.r.t. sophisticated refinements of
interval-based methods (even in the context of control synthesis)

L. Fribourg, A. Le Coént, et al. SHARC17 Conference June 30, 2017 29 / 30



Final remarks

Very simple method
Easy to implement (a few hundreds of lines of Octave)

Fast, but may lack precision w.r.t. sophisticated refinements of
interval-based methods (even in the context of control synthesis)

Method can be adapted to guarantee reachability (instead of stability)

L. Fribourg, A. Le Coént, et al. SHARC17 Conference June 30, 2017 29 / 30



Final remarks

Very simple method
Easy to implement (a few hundreds of lines of Octave)

Fast, but may lack precision w.r.t. sophisticated refinements of
interval-based methods (even in the context of control synthesis)

Method can be adapted to guarantee reachability (instead of stability)

Replacement of forward Euler's method by better numerical schemes
(e.g.: backward Euler, Runge-Kutta of order 4)
does not seem to yield significant gain (due to periodical tracking).
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Fast, but may lack precision w.r.t. sophisticated refinements of
interval-based methods (even in the context of control synthesis)

Method can be adapted to guarantee reachability (instead of stability)

Replacement of forward Euler's method by better numerical schemes
(e.g.: backward Euler, Runge-Kutta of order 4)
does not seem to yield significant gain (due to periodical tracking).

@ Several examples for which E.-based control synthesis

m beats state-of-art interval-based control methods
(e.g.: 4-room building ventilation)

m fails/ is beaten by standard interval-based control methods
(e.g.: DC-DC Boost converter)
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Final remarks

Very simple method
Easy to implement (a few hundreds of lines of Octave)

Fast, but may lack precision w.r.t. sophisticated refinements of
interval-based methods (even in the context of control synthesis)

Method can be adapted to guarantee reachability (instead of stability)

Replacement of forward Euler's method by better numerical schemes
(e.g.: backward Euler, Runge-Kutta of order 4)
does not seem to yield significant gain (due to periodical tracking).

@ Several examples for which E.-based control synthesis

m beats state-of-art interval-based control methods
(e.g.: 4-room building ventilation)

m fails/ is beaten by standard interval-based control methods
(e.g.: DC-DC Boost converter)

Deserves further experimentations...
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Thanks!
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