# Euler's method applied to the control of switched systems

Laurent Fribourg<sup>1</sup>

joint work with: Adrien Le Coënt<sup>2</sup>, Florian De Vuyst<sup>2</sup>, Ludovic Chamoin<sup>3</sup>, Julien Alexandre dit Sandretto<sup>4</sup>, Alexandre Chapoutot<sup>4</sup>

June 30, 2017

<sup>1</sup>CNRS - LSV - ENS Paris-Saclay - INRIA
 <sup>2</sup>CMLA - ENS Paris-Saclay
 <sup>3</sup>LMT - ENS Paris-Saclay
 <sup>4</sup>U2IS - ENSTA ParisTech



#### **1** Switched systems with $\tau$ -sampling

2 General problem of control synthesis for (R,S)-stability → basic problem of one-step invariance and set (or symbolic) integration

- 2 General problem of control synthesis for (R,S)-stability → basic problem of one-step invariance and set (or symbolic) integration
- **3** Euler's method and error estimation  $\delta$  (using Dahlquist constant  $\lambda$ )  $\longrightarrow$  application to set integration and control synthesis

- 2 General problem of control synthesis for (R,S)-stability → basic problem of one-step invariance and set (or symbolic) integration
- **3** Euler's method and error estimation  $\delta$  (using Dahlquist constant  $\lambda$ )  $\longrightarrow$  application to set integration and control synthesis
- 4 Euler error in presence of disturbance
   → application to distributed control synthesis

- 2 General problem of control synthesis for (R,S)-stability → basic problem of one-step invariance and set (or symbolic) integration
- **3** Euler's method and error estimation  $\delta$  (using Dahlquist constant  $\lambda$ )  $\longrightarrow$  application to set integration and control synthesis
- 4 Euler error in presence of disturbance  $\longrightarrow$  application to distributed control synthesis
- 5 Comparison with classical interval-based integration methods

## Outline



## Switched systems

A continuous switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t))$ 

• state  $x(t) \in \mathbb{R}^n$ 

• switching rule  $\sigma(\cdot) : \mathbb{R}^+ \longrightarrow U$ 

• finite set of (switched) modes  $U = \{1, \dots, N\}$ 

## Switched systems

A continuous switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t))$ 

• state  $x(t) \in \mathbb{R}^n$ 

- switching rule  $\sigma(\cdot) : \mathbb{R}^+ \longrightarrow U$
- finite set of (switched) modes  $U = \{1, \dots, N\}$

We focus on sampled switched systems: given a sampling period  $\tau > 0$ , switchings will occur at times  $\tau$ ,  $2\tau$ , ...

# Switched systems

A continuous switched system

 $\dot{x}(t) = f_{\sigma(t)}(x(t))$ 

• state  $x(t) \in \mathbb{R}^n$ 

- switching rule  $\sigma(\cdot) : \mathbb{R}^+ \longrightarrow U$
- finite set of (switched) modes  $U = \{1, \dots, N\}$

We focus on sampled switched systems: given a sampling period  $\tau > 0$ , switchings will occur at times  $\tau$ ,  $2\tau$ , ...

#### Control Synthesis problem:

Find at each sampling time, the appropriate mode  $u \in U$  (in function of the value of x(t)) in order to make the system satisfy a certain property.



$$\begin{pmatrix} T_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f \mathbf{u}_1 & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} - \alpha_f \mathbf{u}_2 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f \mathbf{u}_1 \\ \alpha_{e2} T_e + \alpha_f T_f \mathbf{u}_2 \end{pmatrix}.$$



$$\begin{pmatrix} T_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f \boldsymbol{u}_1 & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} - \alpha_f \boldsymbol{u}_2 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f \boldsymbol{u}_1 \\ \alpha_{e2} T_e + \alpha_f T_f \boldsymbol{u}_2 \end{pmatrix} .$$

$$\bullet \quad \text{Modes:} \quad \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{; sampling period } \tau$$



$$\begin{aligned} \overline{T}_1 &= f_{u_1}^1(T_1(t), T_2(t)) \\ \overline{T}_2 &= f_{u_2}^2(T_1(t), T_2(t)) \end{aligned}$$

$$\blacksquare \text{ Modes: } \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ ; sampling period } \tau \end{aligned}$$





 $\dot{T}_1 = f_{u_1}^1(T_1(t), T_2(t))$  $\dot{T}_2 = f_{u_2}^2(T_1(t), T_2(t))$ 

• Modes:  $\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ; sampling period  $\tau$ 

- A pattern  $\pi$  is a finite sequence of modes, e.g.  $\left( \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right)$
- A state dependent control consists in selecting at each  $\tau$  a mode (or a pattern) according to the current value of the state.

L. Fribourg, A. Le Coënt, et al.

SHARC17 Conference

We consider the state-dependent control problem of synthesizing  $\sigma$ :

At each sampling time t, find the appropriate switched mode  $u \in U$  according to the current value of x, in order to achieve some objectives:

We consider the state-dependent control problem of synthesizing  $\sigma$ :

At each sampling time t, find the appropriate switched mode  $u \in U$  according to the current value of x, in order to achieve some objectives:

reachability (given a target region R, find a control which drives x to R, for any x in R<sub>init</sub>)



We consider the state-dependent control problem of synthesizing  $\sigma$ :

At each sampling time t, find the appropriate switched mode  $u \in U$  according to the current value of x, in order to achieve some objectives:

- reachability (given a target region R, find a control which drives x to R, for any x in R<sub>init</sub>)
- stability (once in *R*, find a control which always maintain × in a neighborhood S = R + ε of R)



We consider the state-dependent control problem of synthesizing  $\sigma$ :

At each sampling time t, find the appropriate switched mode  $u \in U$  according to the current value of x, in order to achieve some objectives:

- reachability (given a target region R, find a control which drives x to R, for any x in R<sub>init</sub>)
- stability (once in R, find a control which always maintain x in a neighborhood S = R + ε of R)



<u>NB</u>: classic stabilization to an equilibrium point, impossible to achieve here  $\sim$  practical stability

## Outline



# Focus on (R, S)-stability



# Focus on (R, S)-stability

Being given a recurrence (rectang.) set R and a safety (rectang.) set S, we consider the state-dependent control problem of synthesizing  $\sigma$ :

At each sampling time t, determine the switched mode  $u \in U$  in function of the value of x(t), in order to satisfy:







**1** Cover *R* with a finite set of balls  $B_1^0, B_2^0, ...$  all  $\subset S$ 



Cover R with a finite set of balls B<sup>0</sup><sub>1</sub>, B<sup>0</sup><sub>2</sub>, ... all ⊂ S
 for each ball B<sup>0</sup>, find a pattern π of length k s.t. all the controlled traj. x(t) with x(0) ∈ B<sup>0</sup>, satisfy:



Cover R with a finite set of balls B<sup>0</sup><sub>1</sub>, B<sup>0</sup><sub>2</sub>, ... all ⊂ S
 for each ball B<sup>0</sup>, find a pattern π of length k s.t. all the controlled traj. x(t) with x(0) ∈ B<sup>0</sup>, satisfy:

 $x(t) \in S$  for all  $t \in [0, k\tau]$ 



Cover R with a finite set of balls B<sup>0</sup><sub>1</sub>, B<sup>0</sup><sub>2</sub>, ... all ⊂ S
 for each ball B<sup>0</sup>, find a pattern π of length k s.t. all the controlled traj. x(t) with x(0) ∈ B<sup>0</sup>, satisfy:

 $x(t) \in S$  for all  $t \in [0, k au]$   $\land$   $x(t) \in R$  for t = k au

**1** At each ball B (covering R), is assoc. a "returning pattern"  $\pi$  of lg., say k

<sup>1</sup> $\approx$  Model Predictive Control where the optimal strategy is estimated (online) for the next  $k_1$  steps (but strategy updated there at *each* step,  $\neq$  after  $k_1$  steps: "receding prediction horizon"). Note also that, here, control  $\pi_1$  is computed off line.

L. Fribourg, A. Le Coënt, et al.

SHARC17 Conference

- **1** At each ball B (covering R), is assoc. a "returning pattern"  $\pi$  of lg., say k
- 2 Once returned in R at  $t = t_1$ , the sensors give the value of  $x(t_1)$ , and a control pattern  $\pi_1$  (corresponding to a ball  $B_1 \ni x(t_1)$ ) is applied; the process iterates at next return time  $(t_2 = t_1 + k_1\tau)$ .

<sup>&</sup>lt;sup>1</sup> $\approx$  Model Predictive Control where the optimal strategy is estimated (online) for the next  $k_1$  steps (but strategy updated there at *each* step,  $\neq$  after  $k_1$  steps: "receding prediction horizon"). Note also that, here, control  $\pi_1$  is computed off line.

- **1** At each ball B (covering R), is assoc. a "returning pattern"  $\pi$  of lg., say k
- 2 Once returned in R at t = t<sub>1</sub>, the sensors give the value of x(t<sub>1</sub>), and a control pattern π<sub>1</sub> (corresponding to a ball B<sub>1</sub> ∋ x(t<sub>1</sub>)) is applied; the process iterates at next return time (t<sub>2</sub> = t<sub>1</sub> + k<sub>1</sub>τ).
- **3** Complexity: for *n* state dimension, *N* modes, *K* max. Ig. of patterns,  $2^{nd}$  balls (uniform covering, with *d* bisection depth):

 $2^{nd}N^{K}$  possible tests of patterns

 $\rightarrow$  exponential in *n*, *d*, *K* (note that *N* can be itself exp. in *n*, cf. room heating example)

<sup>1</sup> $\approx$  Model Predictive Control where the optimal strategy is estimated (online) for the next  $k_1$  steps (but strategy updated there at *each* step,  $\neq$  after  $k_1$  steps: "receding prediction horizon"). Note also that, here, control  $\pi_1$  is computed off line.

- **1** At each ball B (covering R), is assoc. a "returning pattern"  $\pi$  of lg., say k
- 2 Once returned in R at  $t = t_1$ , the sensors give the value of  $x(t_1)$ , and a control pattern  $\pi_1$  (corresponding to a ball  $B_1 \ni x(t_1)$ ) is applied; the process iterates at next return time  $(t_2 = t_1 + k_1\tau)$ .
- **3** Complexity: for *n* state dimension, *N* modes, *K* max. Ig. of patterns,  $2^{nd}$  balls (uniform covering, with *d* bisection depth):

 $2^{nd}N^{K}$  possible tests of patterns

 $\rightarrow$  exponential in *n*, *d*, *K* (note that *N* can be itself exp. in *n*, cf. room heating example)

4 The length |π<sub>1</sub>| = k<sub>1</sub> can be seen as a time-horizon: the strategy is planned for k<sub>1</sub> steps, then updated after k<sub>1</sub> steps.<sup>1</sup>

<sup>1</sup> $\approx$  Model Predictive Control where the optimal strategy is estimated (online) for the next  $k_1$  steps (but strategy updated there at *each* step,  $\neq$  after  $k_1$  steps: "receding prediction horizon"). Note also that, here, control  $\pi_1$  is computed off line.

#### Key notion: one-step invariance

Given a ball  $B^0 \subset S$ , find a mode  $u \in U$  s.t. all the *u*-trajectories x(t) with  $x(0) \in B^0$ , satisfy:

 $x(t) \in S$  for all  $t \in [0, \tau]$ 



#### Key notion: one-step invariance

Given a ball  $B^0 \subset S$ , find a mode  $u \in U$  s.t. all the *u*-trajectories x(t) with  $x(0) \in B^0$ , satisfy:

 $x(t) \in S$  for all  $t \in [0, \tau]$ 



 $\rightarrow$  requires a techn. of set-integration; we will use an Euler-based techn.

## Outline



Euler's estimation method of x(t) (with  $\dot{x}(t) = f(x(t))$ )

$$\tilde{x}(t) = \tilde{x}(t_0) + f(\tilde{x}(t_0))(t-t_0)$$



Suppose that, for the current step size  $\tau$  (or a sub-sampling size h), the derivative is constant and equal to the derivative at the starting point

## Global error estimated with Lipschitz constant L

• The global error at  $t = t_0 + kh$  is equal to  $||x(t) - \tilde{x}(t)||$ .
### Global error estimated with Lipschitz constant L

The global error at  $t = t_0 + kh$  is equal to  $||x(t) - \tilde{x}(t)||$ . In case n = 1, if f is Lipschitz cont.  $(||f(y) - f(x)|| \le L||y - x||)$ , then:

$$error(t) \leq rac{hM}{2L}(e^{L(t-t_0)}-1)$$

where L is the Lipschitz constant of f (and M an upper bound on f'').

## Global error estimated with Lipschitz constant L

The global error at  $t = t_0 + kh$  is equal to  $||x(t) - \tilde{x}(t)||$ . In case n = 1, if f is Lipschitz cont.  $(||f(y) - f(x)|| \le L||y - x||)$ , then:

$$error(t) \leq rac{hM}{2L}(e^{L(t-t_0)}-1)$$

where L is the Lipschitz constant of f (and M an upper bound on f'').

■ In case of "stiff" equations, *L* can be very big.

## Global error estimated with Lipschitz constant L

The global error at  $t = t_0 + kh$  is equal to  $||x(t) - \tilde{x}(t)||$ . In case n = 1, if f is Lipschitz cont.  $(||f(y) - f(x)|| \le L||y - x||)$ , then:

$$error(t) \leq rac{hM}{2L}(e^{L(t-t_0)}-1)$$

where L is the Lipschitz constant of f (and M an upper bound on f'').

■ In case of "stiff" equations, *L* can be very big.

We now consider a more appropriate constant  $\lambda$  that leads to sharper estimations of the Euler error.

Dahlquist's constant  $\lambda$  ("one-sided Lipschitz" constant)

•  $\lambda \in \mathbb{R}$  is a constant s.t., for all  $x, y \in S$ :

$$\langle f(y) - f(x), y - x \rangle \leq \lambda \|y - x\|^2$$

where  $\langle\cdot,\cdot\rangle$  denote the scalar product of two vectors of  $\mathbb{R}^n$ 

<sup>2</sup>Define  $V(x, x') = ||x - x'||^2$ ; we have:  $\frac{dV}{dt} \leq \lambda V$  (hence  $V = V_0 e^{\lambda t}$ ). So V is an exponentially stable Lyapunov function when  $\lambda < 0$ .

L. Fribourg, A. Le Coënt, et al.

Dahlquist's constant  $\lambda$  ("one-sided Lipschitz" constant)

•  $\lambda \in \mathbb{R}$  is a constant s.t., for all  $x, y \in S$ :

$$\langle f(y) - f(x), y - x \rangle \leq \lambda \|y - x\|^2$$

where  $\langle \cdot, \cdot \rangle$  denote the scalar product of two vectors of  $\mathbb{R}^n$ 

•  $\lambda$  can be < 0 ( $\rightarrow$  contractivity)<sup>2</sup>; even in case  $\lambda > 0$ , in practice:  $\lambda << L$  $\rightarrow$  sharper ( $\lambda$ -exponential based) estimation of Euler error

<sup>2</sup>Define  $V(x, x') = ||x - x'||^2$ ; we have:  $\frac{dV}{dt} \leq \lambda V$  (hence  $V = V_0 e^{\lambda t}$ ). So V is an exponentially stable Lyapunov function when  $\lambda < 0$ .

Dahlquist's constant  $\lambda$  ("one-sided Lipschitz" constant)

•  $\lambda \in \mathbb{R}$  is a constant s.t., for all  $x, y \in S$ :

$$\langle f(y) - f(x), y - x \rangle \leq \lambda \|y - x\|^2$$

where  $\langle \cdot, \cdot 
angle$  denote the scalar product of two vectors of  $\mathbb{R}^n$ 

λ can be < 0 (→ contractivity)<sup>2</sup>;
 even in case λ > 0, in practice: λ << L</li>
 → sharper (λ-exponential based) estimation of Euler error

•  $\lambda$  can be computed using constraint optimization algorithms

<sup>2</sup>Define  $V(x, x') = ||x - x'||^2$ ; we have:  $\frac{dV}{dt} \leq \lambda V$  (hence  $V = V_0 e^{\lambda t}$ ). So V is an exponentially stable Lyapunov function when  $\lambda < 0$ .

Local error function  $\delta(\cdot)$  estimated using constant  $\lambda$ Given an initial error  $\delta_0$  of  $\tilde{x}(t)$  (i.e.:  $\|\tilde{x}(0) - x(0)\| \le \delta_0$ ), the local E. error fn  $\delta(\cdot)$  (s.t.:  $\|x(t) - \tilde{x}(t)\| \le \delta(t)$ , for  $t \in [0, \tau]$ ) can be defined (for each mode u) by: Local error function  $\delta(\cdot)$  estimated using constant  $\lambda$ Given an initial error  $\delta_0$  of  $\tilde{x}(t)$  (i.e.:  $\|\tilde{x}(0) - x(0)\| \le \delta_0$ ), the local E. error fn  $\delta(\cdot)$  (s.t.:  $\|x(t) - \tilde{x}(t)\| \le \delta(t)$ , for  $t \in [0, \tau]$ ) can be defined (for each mode u) by:

• If 
$$\lambda < 0$$
:  

$$\delta(t) = \left(\delta_0^2 e^{\lambda t} + \frac{C^2}{\lambda^2} \left(t^2 + \frac{2t}{\lambda} + \frac{2}{\lambda^2} \left(1 - e^{\lambda t}\right)\right)\right)^{\frac{1}{2}}$$
• If  $\lambda = 0$ :  

$$\delta(t) = \left(\delta_0^2 e^t + C^2 (-t^2 - 2t + 2(e^t - 1))\right)^{\frac{1}{2}}$$

• if 
$$\lambda > 0$$
:  

$$\delta(t) = \left(\delta_0^2 e^{3\lambda t} + \frac{C^2}{3\lambda^2} \left(-t^2 - \frac{2t}{3\lambda} + \frac{2}{9\lambda^2} \left(e^{3\lambda t} - 1\right)\right)\right)^{\frac{1}{2}}$$

with  $C = \sup_{x \in S} L \|f(x)\|$ .

Local error function  $\delta(\cdot)$  estimated using constant  $\lambda$ Given an initial error  $\delta_0$  of  $\tilde{x}(t)$  (i.e.:  $\|\tilde{x}(0) - x(0)\| \le \delta_0$ ), the local E. error fn  $\delta(\cdot)$  (s.t.:  $\|x(t) - \tilde{x}(t)\| \le \delta(t)$ , for  $t \in [0, \tau]$ ) can be defined (for each mode u) by:

• If 
$$\lambda < 0$$
:  

$$\delta(t) = \left(\delta_0^2 e^{\lambda t} + \frac{C^2}{\lambda^2} \left(t^2 + \frac{2t}{\lambda} + \frac{2}{\lambda^2} \left(1 - e^{\lambda t}\right)\right)\right)^{\frac{1}{2}}$$
• if  $\lambda = 0$ :  

$$\delta(t) = \left(\delta_0^2 e^t + C^2 (-t^2 - 2t + 2(e^t - 1))\right)^{\frac{1}{2}}$$

• if 
$$\lambda > 0$$
:  

$$\delta(t) = \left(\delta_0^2 e^{3\lambda t} + \frac{C^2}{3\lambda^2} \left(-t^2 - \frac{2t}{3\lambda} + \frac{2}{9\lambda^2} \left(e^{3\lambda t} - 1\right)\right)\right)^{\frac{1}{2}}$$

with  $C = \sup_{x \in S} L \|f(x)\|$ .

see [A. Le Coënt's Ph.D Thesis, 2017].

# One-step invariance using the E. error fn $\delta(\cdot)$ • Given a ball $B^0 \equiv B(\tilde{x}^0, \delta^0) \subset S$ , find a mode u s.t.: $x(t) \in S$ for all $x(0) \in B^0, t \in [0, \tau]$



i.e.:  $B^1 \equiv B(\tilde{x}^1, \delta^1) \subset S$  with  $\tilde{x}^1 = \tilde{x}^0 + f(\tilde{x}^0)\tau$  and  $\delta^1 = \delta(\tau)$ (assuming convexity of  $\delta(\cdot)$  on  $[0, \tau]$ ).

L. Fribourg, A. Le Coënt, et al.

SHARC17 Conference

### Finding a control pattern $\pi$ using $\delta(\cdot)$

• Given a ball  $B^0 \equiv B(\tilde{x}^0, \delta^0) \subset S$ , find a pattern  $\pi$  (of length k) s.t.:  $x(t) \in S$  for all  $x(0) \in B^0, t \in [0, k\tau]$ 



i.e.: 
$$B^1 \equiv B(\tilde{x}^1, \delta^1) \subset S, \quad \dots, \quad B^k \equiv B(\tilde{x}^k, \delta^k) \subset S$$

L. Fribourg, A. Le Coënt, et al.

SHARC17 Conference

# (R,S)-stable control synthesis using E. error fn $\delta(\cdot)$



For each ball  $B_i^0 \equiv B(\tilde{x}_i^0, \delta_i^0) \subset S$  covering R, find a pattern  $\pi_i$  (of length  $k_i$ ) s.t.:

# (R,S)-stable control synthesis using E. error fn $\delta(\cdot)$



For each ball  $B_i^0 \equiv B(\tilde{x}_i^0, \delta_i^0) \subset S$  covering R, find a pattern  $\pi_i$  (of length  $k_i$ ) s.t.:

• Safety:  $B_i^1 \equiv B(\tilde{x}_i^1, \delta_i^1) \subset S, ..., B_i^{k_i-1} \equiv B(\tilde{x}_i^{k_i-1}, \delta_i^{k_i-1}) \subset S$ , and

# (R,S)-stable control synthesis using E. error fn $\delta(\cdot)$



For each ball  $B_i^0 \equiv B(\tilde{x}_i^0, \delta_i^0) \subset S$  covering R, find a pattern  $\pi_i$  (of length  $k_i$ ) s.t.:

Safety:  $B_i^1 \equiv B(\tilde{x}_i^1, \delta_i^1) \subset S, ..., B_i^{k_i-1} \equiv B(\tilde{x}_i^{k_i-1}, \delta_i^{k_i-1}) \subset S$ , and Recurrence:  $B_i^{k_i} \equiv B(\tilde{x}_i^{k_i}, \delta_i^{k_i}) \subset R$ 

### Outline



# incremental Input-to-State Stability (i-ISS) in presence of disturbance $w \in W$

Consider:  $\dot{x}(t) = f(x(t), w(t))$  with  $w(t) \in W$  for all  $t \in [0, \tau]$ .

L. Fribourg, A. Le Coënt, et al.

SHARC17 Conference

<sup>&</sup>lt;sup>3</sup>In case  $\lambda < 0$ , (H) expresses (a variant of) the fact that  $V(x, x') = ||x - x'||^2$  is an i-ISS Lyapunov fn (see, e.g., [D. Angeli] [Hespanha et al.]). The constants  $\lambda, \gamma$  can be numerically computed using constrained optimization algos.

incremental Input-to-State Stability (i-ISS) in presence of disturbance  $w \in W$ 

Consider:  $\dot{x}(t) = f(x(t), w(t))$  with  $w(t) \in W$  for all  $t \in [0, \tau]$ .

The eq.  $\dot{x} = f(x, w)$  with  $w \in W$  is said to satisfy the property of i-ISS w.r.t disturbance set W if  $\exists \lambda \in \mathbb{R}^3$  and  $\gamma \in \mathbb{R}_{\geq 0}$  s.t.

L. Fribourg, A. Le Coënt, et al.

SHARC17 Conference

<sup>&</sup>lt;sup>3</sup>In case  $\lambda < 0$ , (H) expresses (a variant of) the fact that  $V(x, x') = ||x - x'||^2$  is an i-ISS Lyapunov fn (see, e.g., [D. Angeli] [Hespanha et al.]). The constants  $\lambda, \gamma$  can be numerically computed using constrained optimization algos.

incremental Input-to-State Stability (i-ISS) in presence of disturbance  $w \in W$ 

Consider:  $\dot{x}(t) = f(x(t), w(t))$  with  $w(t) \in W$  for all  $t \in [0, \tau]$ .

The eq.  $\dot{x} = f(x, w)$  with  $w \in W$  is said to satisfy the property of i-ISS w.r.t disturbance set W if  $\exists \lambda \in \mathbb{R}^3$  and  $\gamma \in \mathbb{R}_{>0}$  s.t.

(H) 
$$\forall x, x' \in S, \forall w, w' \in W$$
:

 $\langle f(x,w) - f(x',w'), x - x' \rangle \leq \lambda ||x - x'||^2 + \gamma ||x - x'|| ||w - w'||.$ 

L. Fribourg, A. Le Coënt, et al.

<sup>&</sup>lt;sup>3</sup>In case  $\lambda < 0$ , (H) expresses (a variant of) the fact that  $V(x, x') = ||x - x'||^2$  is an i-ISS Lyapunov fn (see, e.g., [D. Angeli] [Hespanha et al.]). The constants  $\lambda, \gamma$  can be numerically computed using constrained optimization algos.

# E. error function $\delta_W(\cdot)$ in presence of disturbance $w \in W$

#### Consider the ODE:

 $\dot{x}(t) = f(x(t), w(t))$  with  $w(t) \in W$  for all  $t \in [0, \tau]$ .

# E. error function $\delta_W(\cdot)$ in presence of disturbance $w \in W$

- The fn  $\delta_W(\cdot)$  (s.t: for all  $t \in [0, \tau]$ ,  $w(t) \in W$ :  $||x(t) \tilde{x}(t)|| \le \delta_W(t)$ ) can now be defined by:
  - if  $\lambda < 0$ ,

$$\delta_{W}(t) = \left(\frac{(C)^{2}}{-(\lambda)^{4}} \left(-(\lambda)^{2} t^{2} - 2\lambda t + 2e^{\lambda t} - 2\right) + \frac{1}{(\lambda)^{2}} \left(\frac{C\gamma|W|}{-\lambda} \left(-\lambda t + e^{\lambda t} - 1\right) + \lambda \left(\frac{(\gamma)^{2}(|W|/2)^{2}}{-\lambda} (e^{\lambda t} - 1) + \lambda (\delta^{0})^{2} e^{\lambda t}\right)\right)\right)^{1/2}$$
(1)

 $\quad \ \ \, \text{ if } \lambda > 0,$ 

$$\delta_{W}(t) = \frac{1}{(3\lambda)^{3/2}} \left( \frac{C^{2}}{\lambda} \left( -9(\lambda)^{2} t^{2} - 6\lambda t + 2e^{3\lambda t} - 2 \right) + 3\lambda \left( \frac{C\gamma|W|}{\lambda} \left( -3\lambda t + e^{3\lambda t} - 1 \right) + 3\lambda \left( \frac{(\gamma)^{2}(|W|/2)^{2}}{\lambda} (e^{3\lambda t} - 1) + 3\lambda (\delta^{0})^{2} e^{3\lambda t} \right) \right) \right)^{1/2}$$
(2)

if  $\lambda = 0$ ,

$$\delta_W(t) = \left( (C)^2 \left( -t^2 - 2t + 2e^t - 2 \right) + \left( C\gamma |W| \left( -t + e^t - 1 \right) + \left( (\gamma)^2 (|W|/2)^2 (e^t - 1) + (\delta^0)^2 e^t \right) \right) \right)^{1/2}$$

L. Fribourg, A. Le Coënt, et al.

$$\dot{x}_1 = f^1(x_1, x_2)$$
  
 $\dot{x}_2 = f^2(x_1, x_2)$ 

 $\dot{x}_1 = f^1(x_1, x_2)$  $\dot{x}_2 = f^2(x_1, x_2)$ 

Suppose:

- (H1)  $\dot{x}_1 = f^1(x_1, x_2)$  is i-ISS w.r.t disturbance  $x_2 \in S_2$ , with  $\lambda^1, \gamma^1$ .
- (H2)  $\dot{x}_2 = f^2(x_1, x_2)$  is i-ISS w.r.t disturbance  $x_1 \in S_1$ , with  $\lambda^2, \gamma^2$ .

 $\dot{x}_1 = f^1(x_1, x_2)$  $\dot{x}_2 = f^2(x_1, x_2)$ 

Suppose:

- (H1)  $\dot{x}_1 = f^1(x_1, x_2)$  is i-ISS w.r.t disturbance  $x_2 \in S_2$ , with  $\lambda^1, \gamma^1$ .
- (H2)  $\dot{x}_2 = f^2(x_1, x_2)$  is i-ISS w.r.t disturbance  $x_1 \in S_1$ , with  $\lambda^2, \gamma^2$ .

#### Theorem (compositionality): If

- σ<sub>1</sub> is an (R<sub>1</sub>, S<sub>1</sub>)-stable control of x<sub>1</sub>(t) with S<sub>2</sub> as domain of disturbance, using the E. error fn δ<sub>1,S<sub>2</sub></sub>(t) (bounding ||x̃<sub>1</sub>(t) − x<sub>1</sub>(t)|| in terms of (λ<sup>1</sup>, γ<sup>1</sup>))
- $\sigma_2$  is an  $(R_2, S_2)$ -stable control of  $x_2(t)$  using the E. error fn  $\delta_{2,S_1}(t)$ .

 $\dot{x}_1 = f^1(x_1, x_2)$  $\dot{x}_2 = f^2(x_1, x_2)$ 

Suppose:

- (H1)  $\dot{x}_1 = f^1(x_1, x_2)$  is i-ISS w.r.t disturbance  $x_2 \in S_2$ , with  $\lambda^1, \gamma^1$ .
- (H2)  $\dot{x}_2 = f^2(x_1, x_2)$  is i-ISS w.r.t disturbance  $x_1 \in S_1$ , with  $\lambda^2, \gamma^2$ .

#### Theorem (compositionality): If

- σ<sub>1</sub> is an (R<sub>1</sub>, S<sub>1</sub>)-stable control of x<sub>1</sub>(t) with S<sub>2</sub> as domain of disturbance, using the E. error fn δ<sub>1,S<sub>2</sub></sub>(t) (bounding ||x̃<sub>1</sub>(t) − x<sub>1</sub>(t)|| in terms of (λ<sup>1</sup>, γ<sup>1</sup>))
- $\sigma_2$  is an  $(R_2, S_2)$ -stable control of  $x_2(t)$  using the E. error fn  $\delta_{2,S_1}(t)$ .

Then:  $\sigma = \sigma_1 | \sigma_2$  is an  $(R_1 \times R_2, S_1 \times S_2)$ -stable control of  $x(t) = (x_1(t), x_2(t))$ .

# Illustration of Distributed vs. Centralized Control

Centralized control synthesis

 $\dot{x}(t)=f_u(x(t))$ 

Example of a validated pattern of length 2 mapping the "ball" X into R with  $S = R + a + \varepsilon$  as safety box:



Distrib. Control Synth. (of  $x_1$  using  $S_2$  as approx. of  $x_2$ )

 $\dot{x}_1(t) = f_{u_1}^1(x_1(t), x_2(t))$  $\dot{x}_2(t) = f_{u_2}^2(x_1(t), x_2(t))$ 

Target zone:  $R = R_1 \times R_2$ 



L. Fribourg, A. Le Coënt, et al.

Distrib. Control Synth. (of  $x_2$  using  $S_1$  as approx. of  $x_1$ )

 $\dot{x}_1(t) = f_{u_1}^1(x_1(t), x_2(t))$  $\dot{x}_2(t) = f_{u_2}^2(x_1(t), x_2(t))$ 

Target zone:  $R = R_1 \times R_2$ 



# Application to distributed control of switched systems



Simulations of centralized control (left) and distributed (right) for the 4-rooms problem [P.-J. Meyer's Ph.D., 2015]

# Application to distributed control of switched systems



Simulations of centralized control (left) and distributed (right) for the 4-rooms problem [P.-J. Meyer's Ph.D., 2015]

 $\begin{array}{c} \hline \begin{array}{c} \text{centralized synthesis} \\ \hline 2^4 \text{ modes, } 256 \text{ balls} \end{array} \xrightarrow{} \begin{array}{c} (|\pi|=2): \text{ sub-sampling } h=\frac{\tau}{20}, \\ \hline 48 \text{ s. of CPU time.} \end{array}$ 

# Application to distributed control of switched systems



Simulations of centralized control (left) and distributed (right) for the 4-rooms problem [P.-J. Meyer's Ph.D., 2015]

- centralized synthesis ( $|\pi| = 2$ ): sub-sampling  $h = \frac{\tau}{20}$ ,  $2^4$  modes, 256 balls  $\rightarrow$  48 s. of CPU time.
- distributed synthesis ( $|\pi| = 2$ ): sub-sampling  $h = \frac{\tau}{10} | h = \frac{\tau}{1}$ ,  $2^2 | 2^2$  modes, 16 | 16 balls  $\rightarrow < 1 s$ . of CPU time.

- Final remarks
  - **1** Very simple method

- **1** Very simple method
- **2** Easy to implement (a few hundreds of lines of Octave)

- **1** Very simple method
- **2** Easy to implement (a few hundreds of lines of Octave)
- **3** Fast, but may lack precision w.r.t. sophisticated refinements of interval-based methods (even in the context of control synthesis)

- **1** Very simple method
- **2** Easy to implement (a few hundreds of lines of Octave)
- **3** Fast, but may lack precision w.r.t. sophisticated refinements of interval-based methods (even in the context of control synthesis)
- 4 Method can be adapted to guarantee reachability (instead of stability)

- **1** Very simple method
- **2** Easy to implement (a few hundreds of lines of Octave)
- **3** Fast, but may lack precision w.r.t. sophisticated refinements of interval-based methods (even in the context of control synthesis)
- 4 Method can be adapted to guarantee reachability (instead of stability)
- 5 Replacement of forward Euler's method by better numerical schemes (e.g.: backward Euler, Runge-Kutta of order 4) does not seem to yield significant gain (due to periodical tracking).
## Final remarks

- **1** Very simple method
- 2 Easy to implement (a few hundreds of lines of Octave)
- **3** Fast, but may lack precision w.r.t. sophisticated refinements of interval-based methods (even in the context of control synthesis)
- 4 Method can be adapted to guarantee reachability (instead of stability)
- 5 Replacement of forward Euler's method by better numerical schemes (e.g.: backward Euler, Runge-Kutta of order 4) does not seem to yield significant gain (due to periodical tracking).
- 6 Several examples for which E.-based control synthesis
  - beats state-of-art interval-based control methods (e.g.: 4-room building ventilation)
  - fails/ is beaten by standard interval-based control methods (e.g.: DC-DC Boost converter)

## Final remarks

- **1** Very simple method
- 2 Easy to implement (a few hundreds of lines of Octave)
- **3** Fast, but may lack precision w.r.t. sophisticated refinements of interval-based methods (even in the context of control synthesis)
- 4 Method can be adapted to guarantee reachability (instead of stability)
- 5 Replacement of forward Euler's method by better numerical schemes (e.g.: backward Euler, Runge-Kutta of order 4) does not seem to yield significant gain (due to periodical tracking).
- 6 Several examples for which E.-based control synthesis
  - beats state-of-art interval-based control methods (e.g.: 4-room building ventilation)
  - fails/ is beaten by standard interval-based control methods (e.g.: DC-DC Boost converter)
- 7 Deserves further experimentations...

## Disturbance

## Thanks!

L. Fribourg, A. Le Coënt, et al.