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Switched systems

Switched systems

A continuous switched system

ẋ(t) = fσ(t)(x(t))

state x(t) ∈ Rn

switching rule σ(·) : R+ −→ U

finite set of (switched) modes U = {1, . . . ,N}

We focus on sampled switched systems:
given a sampling period τ > 0, switchings will occur at times τ , 2τ , . . .

Control Synthesis problem:
Find at each sampling time, the appropriate mode u ∈ U (in function of
the value of x(t)) in order to make the system satisfy a certain property.
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Switched systems

Example: Two-room apartment

˙(
T1

T2

)
=

(
−α21 − αe1 − αf u1 α21

α12 −α12 − αe2 − αf u2

)(
T1

T2

)
+

(
αe1Te + αf Tf u1
αe2Te + αf Tf u2

)
.

Modes:

(
u1
u2

)
=

(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)
; sampling period τ

A pattern π is a finite sequence of modes, e.g.

((
0
1

)
·
(

0
0

)
·
(

1
1

))
A state dependent control consists in selecting at each τ a mode (or a
pattern) according to the current value of the state.
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Switched systems

Example: Two-room apartment
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Switched systems

Reachability and Stability Problems

We consider the state-dependent control problem of synthesizing σ:

At each sampling time t, find the appropriate switched mode u ∈ U
according to the current value of x , in order to achieve some objectives:

reachability (given a target region R,
find a control which drives x to R, for
any x in Rinit)

stability (once in R, find a control
which always maintain x in a
neighborhood S = R + ε of R)

NB: classic stabilization to an equilibrium point, impossible to achieve here
; practical stability

L. Fribourg, A. Le Coënt, et al. SHARC17 Conference June 30, 2017 6 / 30



Switched systems

Reachability and Stability Problems

We consider the state-dependent control problem of synthesizing σ:

At each sampling time t, find the appropriate switched mode u ∈ U
according to the current value of x , in order to achieve some objectives:

reachability (given a target region R,
find a control which drives x to R, for
any x in Rinit)

stability (once in R, find a control
which always maintain x in a
neighborhood S = R + ε of R)

NB: classic stabilization to an equilibrium point, impossible to achieve here
; practical stability
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(R,S)-stability

Focus on (R , S)-stability
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(R,S)-stability

Focus on (R , S)-stability
Being given a recurrence (rectang.) set R and a safety (rectang.) set S ,
we consider the state-dependent control problem of synthesizing σ:

At each sampling time t, determine the switched mode u ∈ U in function
of the value of x(t), in order to satisfy:

(R,S)-stability:
if x(0) ∈ R, then x(t):

1 returns infinitely often
into R, and

2 always stays in S .
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(R,S)-stability

Principle of (R,S)-stability control synthesis (MINIMATOR)

[R. Soulat’s PhD, 2013]

1 Cover R with a finite set of balls B0
1 ,B

0
2 , ... all ⊂ S

2 for each ball B0, find a pattern π of length k s.t. all the controlled
traj. x(t) with x(0) ∈ B0, satisfy:

x(t) ∈ S for all t ∈ [0, kτ ] ∧ x(t) ∈ R for t = kτ
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(R,S)-stability

Remarks on (R , S)-stability control

1 At each ball B (covering R), is assoc. a “returning pattern” π of lg., say k

2 Once returned in R at t = t1, the sensors give the value of x(t1), and a
control pattern π1 (corresponding to a ball B1 3 x(t1)) is applied;
the process iterates at next return time (t2 = t1 + k1τ).

3 Complexity: for n state dimension, N modes, K max. lg. of patterns,
2nd balls (uniform covering, with d bisection depth):

2ndNK possible tests of patterns

→ exponential in n, d , K
(note that N can be itself exp. in n, cf. room heating example)

4 The length |π1| = k1 can be seen as a time-horizon: the strategy is planned
for k1 steps, then updated after k1 steps.1

1≈ Model Predictive Control where the optimal strategy is estimated (online) for the
next k1 steps (but strategy updated there at each step, 6= after k1 steps: “receding
prediction horizon”). Note also that, here, control π1 is computed off line.
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(R,S)-stability

Key notion: one-step invariance
Given a ball B0 ⊂ S , find a mode u ∈ U s.t. all the u-trajectories x(t)
with x(0) ∈ B0, satisfy:

x(t) ∈ S for all t ∈ [0, τ ]

−→ requires a techn. of set-integration; we will use an Euler-based techn.

L. Fribourg, A. Le Coënt, et al. SHARC17 Conference June 30, 2017 12 / 30



(R,S)-stability

Key notion: one-step invariance
Given a ball B0 ⊂ S , find a mode u ∈ U s.t. all the u-trajectories x(t)
with x(0) ∈ B0, satisfy:

x(t) ∈ S for all t ∈ [0, τ ]

−→ requires a techn. of set-integration; we will use an Euler-based techn.
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Euler’s method
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Euler’s method

Euler’s estimation method of x(t) (with ẋ(t) = f (x(t)))

x̃(t) = x̃(t0) + f (x̃(t0))(t − t0)

Suppose that, for the current step size τ (or a sub-sampling size h), the
derivative is constant and equal to the derivative at the starting point
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Euler’s method

Global error estimated with Lipschitz constant L

The global error at t = t0 + kh is equal to ‖x(t)− x̃(t)‖.

In case n = 1, if f is Lipschitz cont. (‖f (y)− f (x)‖ ≤ L‖y − x‖),
then:

error(t) ≤ hM

2L
(eL(t−t0) − 1)

where L is the Lipschitz constant of f (and M an upper bound on f ′′).

In case of “stiff” equations, L can be very big.

We now consider a more appropriate constant λ that leads to sharper
estimations of the Euler error.
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Euler’s method

Dahlquist’s constant λ (“one-sided Lipschitz” constant)

λ ∈ R is a constant s.t., for all x , y ∈ S :

〈f (y)− f (x), y − x〉 ≤ λ‖y − x‖2

where 〈·, ·〉 denote the scalar product of two vectors of Rn

λ can be < 0 (→ contractivity)2;
even in case λ > 0, in practice: λ << L

−→ sharper (λ-exponential based) estimation of Euler error

λ can be computed using constraint optimization algorithms

2Define V (x , x ′) = ‖x − x ′‖2; we have: dV
dt
≤ λV (hence V = V0e

λt). So V is an
exponentially stable Lyapunov function when λ < 0.
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Euler’s method

Local error function δ(·) estimated using constant λ
Given an initial error δ0 of x̃(t) (i.e.: ‖x̃(0)− x(0)‖ ≤ δ0),
the local E. error fn δ(·) (s.t.: ‖x(t)− x̃(t)‖ ≤ δ(t), for t ∈ [0, τ ])
can be defined (for each mode u) by:

if λ < 0:

δ(t) =

(
δ
2
0e
λt +

C2

λ2

(
t2 +

2t

λ
+

2

λ2

(
1− eλt

))) 1
2

if λ = 0 :

δ(t) =
(
δ
2
0e

t + C2(−t2 − 2t + 2(et − 1))
) 1

2

if λ > 0 :

δ(t) =

(
δ
2
0e

3λt +
C2

3λ2

(
−t2 −

2t

3λ
+

2

9λ2

(
e3λt − 1

))) 1
2

with C = supx∈S L‖f (x)‖.

see [A. Le Coënt’s Ph.D Thesis, 2017].
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Euler’s method

One-step invariance using the E. error fn δ(·)
Given a ball B0 ≡ B(x̃0, δ0) ⊂ S , find a mode u s.t.:

x(t) ∈ S for all x(0) ∈ B0, t ∈ [0, τ ]

  

~x0

B(~x 0 ,δ ( 0))

S

x0

x1 ~x1

B(~x1 ,δ ( τ ))

i.e.: B1 ≡ B(x̃1, δ1) ⊂ S with x̃1 = x̃0 + f (x̃0)τ and δ1 = δ(τ)
(assuming convexity of δ(·) on [0, τ ]).

L. Fribourg, A. Le Coënt, et al. SHARC17 Conference June 30, 2017 18 / 30



Euler’s method

Finding a control pattern π using δ(·)
Given a ball B0 ≡ B(x̃0, δ0) ⊂ S , find a pattern π (of length k) s.t.:

x(t) ∈ S for all x(0) ∈ B0, t ∈ [0, kτ ]

  

~x0

B(~x 0 ,δ )

S

x0

x1

x2

~x1

~x2

B(~x1 ,δπ
1
)

B(~x 2 ,δ π
2
)

i.e.: B1 ≡ B(x̃1, δ1) ⊂ S , . . . , Bk ≡ B(x̃k , δk) ⊂ S
L. Fribourg, A. Le Coënt, et al. SHARC17 Conference June 30, 2017 19 / 30



Euler’s method

(R,S)-stable control synthesis using E. error fn δ(·)

  

R

S

~x1
~x2

~x3

~x4
~x5

~x6

~x7
~x8

~x9

  

R

S

δ
0

B(~x 3
1 ,δ π3

1
)

~x3
0

B(~x 3
2 ,δ π3

2
)

For each ball B0
i ≡ B(x̃0i , δ

0
i ) ⊂ S covering R, find a pattern πi (of

length ki ) s.t.:

Safety: B1
i ≡ B(x̃1i , δ

1
i ) ⊂ S , ...,Bki−1

i ≡ B(x̃ki−1i , δki−1i ) ⊂ S , and

Recurrence: Bki
i ≡ B(x̃kii , δ

ki
i ) ⊂ R
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Disturbance

Outline

1 Switched systems

2 (R,S)-stability

3 Euler’s method

4 Disturbance
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Disturbance

incremental Input-to-State Stability (i-ISS) in presence of
disturbance w ∈ W

Consider: ẋ(t) = f (x(t),w(t)) with w(t) ∈W for all t ∈ [0, τ ].

The eq. ẋ = f (x ,w) with w ∈W is said to satisfy the
property of i-ISS w.r.t disturbance set W if
∃ λ ∈ R 3 and γ ∈ R≥0 s.t.

(H) ∀x , x ′ ∈ S , ∀w ,w ′ ∈W :

〈f (x ,w)− f (x ′,w ′), x − x ′〉 ≤ λ‖x − x ′‖2 + γ‖x − x ′‖‖w − w ′‖.

3In case λ < 0, (H) expresses (a variant of) the fact that V (x , x ′) = ‖x − x ′‖2 is an
i-ISS Lyapunov fn (see, e.g., [D. Angeli] [Hespanha et al.]). The constants λ, γ can be
numerically computed using constrained optimization algos.
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Disturbance

E. error function δW (·) in presence of disturbance w ∈ W
Consider the ODE:

ẋ(t) = f (x(t),w(t)) with w(t) ∈W for all t ∈ [0, τ ].

if λ < 0,

δW (t) =

(
(C)2

−(λ)4

(
−(λ)2t2 − 2λt + 2eλt − 2

)
+

1

(λ)2

(
Cγ|W |
−λ

(
−λt + eλt − 1

)

+ λ

(
(γ)2(|W |/2)2

−λ
(eλt − 1) + λ(δ0)2eλt

)))1/2

(1)

if λ > 0,

δW (t) =
1

(3λ)3/2

(
C2

λ

(
−9(λ)2t2 − 6λt + 2e3λt − 2

)
+ 3λ

(
Cγ|W |
λ

(
−3λt + e3λt − 1

)

+ 3λ

(
(γ)2(|W |/2)2

λ
(e3λt − 1) + 3λ(δ0)2e3λt

)))1/2

(2)

if λ = 0,

δW (t) =
(
(C)2

(
−t2 − 2t + 2et − 2

)
+
(
Cγ|W |

(
−t + et − 1

)
+((γ)2(|W |/2)2(et−1)+(δ0)2et )))1/2

(3)
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Disturbance

E. error function δW (·) in presence of disturbance w ∈ W
The fn δW (·) (s.t: for all t ∈ [0, τ ], w(t) ∈W : ‖x(t)− x̃(t)‖ ≤ δW (t))

can now be defined by:
if λ < 0,

δW (t) =

(
(C)2

−(λ)4

(
−(λ)2t2 − 2λt + 2eλt − 2

)
+

1

(λ)2

(
Cγ|W |
−λ

(
−λt + eλt − 1

)

+ λ

(
(γ)2(|W |/2)2

−λ
(eλt − 1) + λ(δ0)2eλt

)))1/2

(1)

if λ > 0,

δW (t) =
1

(3λ)3/2

(
C2

λ

(
−9(λ)2t2 − 6λt + 2e3λt − 2

)
+ 3λ

(
Cγ|W |
λ

(
−3λt + e3λt − 1

)

+ 3λ

(
(γ)2(|W |/2)2

λ
(e3λt − 1) + 3λ(δ0)2e3λt

)))1/2

(2)

if λ = 0,

δW (t) =
(
(C)2

(
−t2 − 2t + 2et − 2

)
+
(
Cγ|W |

(
−t + et − 1

)
+((γ)2(|W |/2)2(et−1)+(δ0)2et )))1/2
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Disturbance

Compositional (R,S)-stability using E. error fns δ1,S2, δ2,S1

ẋ1 = f 1(x1, x2)

ẋ2 = f 2(x1, x2)

Suppose:

(H1) ẋ1 = f 1(x1, x2) is i-ISS w.r.t disturbance x2 ∈ S2, with λ1, γ1.

(H2) ẋ2 = f 2(x1, x2) is i-ISS w.r.t disturbance x1 ∈ S1, with λ2, γ2.

Theorem (compositionality): If

σ1 is an (R1,S1)-stable control of x1(t) with S2 as domain of disturbance,
using the E. error fn δ1,S2(t) (bounding ‖x̃1(t)− x1(t)‖ in terms of (λ1, γ1))

σ2 is an (R2,S2)-stable control of x2(t) using the E. error fn δ2,S1(t).

Then: σ = σ1|σ2 is an (R1 × R2,S1 × S2)-stable control of x(t) = (x1(t), x2(t)).
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L. Fribourg, A. Le Coënt, et al. SHARC17 Conference June 30, 2017 24 / 30



Disturbance

Compositional (R,S)-stability using E. error fns δ1,S2, δ2,S1
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Disturbance

Illustration of Distributed vs. Centralized Control
Centralized control synthesis

ẋ(t) = fu(x(t))

Example of a validated pattern of length 2 mapping the “ball” X into R
with S = R + a + ε as safety box:

X ⊂ R

X+ = fu(X ) ⊂ S

X++ = fv (X+) ⊂ R

Pattern u · v depends on X
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Disturbance

Distrib. Control Synth. (of x1 using S2 as approx. of x2)

ẋ1(t) = f 1u1(x1(t), x2(t))

ẋ2(t) = f 2u2(x1(t), x2(t))

Target zone: R = R1 × R2

X1 ⊂ R1

X+
1 = f 1u1(X1, S2) ⊂ S1

X++
1 = f 1v1(X+

1 , S2) ⊂ R1

Pattern u1 · v1 depends only on X1
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Disturbance

Distrib. Control Synth. (of x2 using S1 as approx. of x1)

ẋ1(t) = f 1u1(x1(t), x2(t))

ẋ2(t) = f 2u2(x1(t), x2(t))

Target zone: R = R1 × R2

X2 ⊂ R2

X+
2 = f 2u2(S1,X2) ∈ S2

X++
2 = f 2v2(S1,X

+
2 ) ∈ R2

Pattern u2 · v2 depends only on X2
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Disturbance

Application to distributed control of switched systems

Simulations of centralized control (left) and distributed (right) for the 4-rooms problem [P.-J. Meyer’s Ph.D., 2015]

centralized synthesis (|π| = 2): sub-sampling h = τ
20 ,

24 modes, 256 balls → 48 s. of CPU time.

distributed synthesis (|π| = 2): sub-sampling h = τ
10 | h = τ

1 ,

22 | 22 modes, 16 | 16 balls → < 1 s. of CPU time.
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Disturbance

Final remarks

1 Very simple method

2 Easy to implement (a few hundreds of lines of Octave)

3 Fast, but may lack precision w.r.t. sophisticated refinements of
interval-based methods (even in the context of control synthesis)

4 Method can be adapted to guarantee reachability (instead of stability)

5 Replacement of forward Euler’s method by better numerical schemes
(e.g.: backward Euler, Runge-Kutta of order 4)

does not seem to yield significant gain (due to periodical tracking).

6 Several examples for which E.-based control synthesis

beats state-of-art interval-based control methods
(e.g.: 4-room building ventilation)

fails/ is beaten by standard interval-based control methods
(e.g.: DC-DC Boost converter)

7 Deserves further experimentations...
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L. Fribourg, A. Le Coënt, et al. SHARC17 Conference June 30, 2017 29 / 30



Disturbance

Final remarks

1 Very simple method

2 Easy to implement (a few hundreds of lines of Octave)

3 Fast, but may lack precision w.r.t. sophisticated refinements of
interval-based methods (even in the context of control synthesis)

4 Method can be adapted to guarantee reachability (instead of stability)

5 Replacement of forward Euler’s method by better numerical schemes
(e.g.: backward Euler, Runge-Kutta of order 4)

does not seem to yield significant gain (due to periodical tracking).

6 Several examples for which E.-based control synthesis

beats state-of-art interval-based control methods
(e.g.: 4-room building ventilation)

fails/ is beaten by standard interval-based control methods
(e.g.: DC-DC Boost converter)

7 Deserves further experimentations...
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