MAUVE Runtime: a component-based middleware
to reconfigure software architectures in real-time

David Doose and Christophe Grand and Charles Lesire
ONERA - The French Aerospace Lab, Toulouse, France
Email: david.doose @onera.fr, christophe.grand @onera.fr, charles.lesire @onera.fr

Abstract—Developing robotic applications requires to design
and implement complex software architectures. These architec-
tures must embed advanced algorithms that include capacities
to adapt to unforeseen events like external disturbances, sensor
or actuator failures. To improve the system robustness, its
behavior should be adapted at runtime by a reconfiguration
of its software architecture. Such reconfiguration must be done
safely and efficiently, while ensuring functional constraints and a
minimal quality of service of the system. Among these constraints,
preserving real-time properties of the reconfiguration process is
a key feature. In this paper, we present the preliminary design
of a new component-based middleware that allows to perform
software architecture reconfigurations with a focus on real-time
constraints.

I. INTRODUCTION

Ensuring software dependability of complex robotic ap-
plications is an essential issue in the democratization of
autonomous robots usage in everyday life. Many examples
enlighten the critical need for safety in autonomous systems,
among which drone applications, self-driving cars, or robot-
human cooperation. To guaranty software reliability, we have
proposed an approach sit on three fundamental pillars: (1) the
modeling of software architecture, (2) its implementation on a
deterministic execution middleware, conforming to the model,
(3) the analysis of real-time constraints [[1]].

Many middlewares have been proposed in the robotics com-
munity like ROS, Orocos or Yarp (see [2] for a survey). Some
of them focus on real-time execution, others on modularity and
scalability or on inter-process communications. The originality
of our approach is the design of a toolchain that allows
a schedulability analysis of the software based on models,
from which executable code is generated. In our previous
works, Orocos, a real-time component-based middleware [3]],
has been used as the generation target to evince the benefit
of the toolchain [4]. However, previous experiments have
exhibited some lacks of Orocos with respect to the control
of task synchronisation, and on reconfiguration features. The
ability to reconfigure the software architecture inline is an
essential feature in order to cope with failures or disturbances.
Indeed, some faults can be addressed with a redundancy
in sensing or acting processing chains, requiring sound and
efficient reconfiguration capabilities to adapt the software
architecture. Although it may be possible to reconfigure some
flows in existing middlewares [3l], [Sl], [6] (i.e. to rewire the
ports connections), none of these middlewares also supports
reconfiguration of the computational part of components, nor

provides real-time mechanisms for these reconfigurations.

In this paper, we present the preliminary design of a new
middleware that addresses the lacks identified so far, while
keeping the best practice concepts from our previous works.

II. BACKGROUND AND MOTIVATIONS
A. llustrative example

To illustrate our proposal, we consider a multi-robot ex-
ploration mission, in which each robot has an architecture
as described in Fig. [The Robor component takes velocity

position

map Mapping

goal

position

tgt

[Guidunce [Control jv—el>[Robot

(f position]
J

position

Fig. 1: Architecture of the exploration mission

commands as input and returns the 2D position of the robot.
The Control component implements a PID controller that
computes a velocity command based on the current robot
position and a target position. The Guidance component takes
goal positions as input; its role is first to compute a path from
the current robot position to the goal and then consecutively
send each point of the path as a target to the controller.
The Mapping component takes the position of the robot to
update the status of a map, tagging each cell as explored
or unknown. The Exploration component computes the next
point to explore; it exchanges data with other robots in order
to allocate exploration areas to each robot. In case of a
communication failure, we want to be able to continue the
mission. We then need to reconfigure the architecture, by
replacing the Exploration algorithm by a Local Exploration,
where the robot takes decision on the points to explore on its
own, without communicating with the other robots.

B. Background

The previously proposed MAUVE toolchain [[1] was based
on a three-step development process: (1) modeling the archi-
tecture, (2) generating the corresponding code, instrumented

with tracing tools, (3) analyze real-time behavior based on the
model and the runtime execution traces.

The modeling step was based on component-based archi-
tecture models using the MAUVE Domain Specific Language
(DSL). In this language, the software architecture is described
as components connected to each others through directed data
ports and configured through properties. The behavior of each
component is defined by a finite state machine whose activity
is managed by a dedicated real-time task. Components are
instantiated and their data ports connected together to form
the system architecture which is initialized and launched by a
specific tool: the deployer.

The software safety insurance is based first on the automatic
generation of laborious and systematic sections of code, and
secondly on the generation of runtime execution traces that
are combined with the model to verify the schedulability of
the whole architecture for a specific target (7], [4]].

To summarize, our approach is based on three founda-
tions: (1) the MAUVE DSL, (2) an efficient and reliable
runtime middleware (that conforms to the model), (3) real-time
analysis. For the second, we chose the well-know real-time
middleware Orocos [3] which offers interesting features such
as the finite state machine description of components behavior,
the thread-safe (lock-free) communication paradigm and the
interoperability with ROS. As explained below, this choice of
Orocos imposes a specific runtime model which proved not
to be always adapted to our requirements. Other middlewares
such as ROS [5] do not provide any runtime model, meaning
that we must define a model anyway.

C. Periodic State Machines

In the previous execution model [7], each component be-
havior is defined by a periodic finite-state machine (PSM),
where each state executes a specific action. Each component
is then mapped to a real-time periodic task, and executes a
single action during each period. Let’s consider the Guidance
component of the architecture of Fig. The PSM of the
Guidance component is shown in Fig. 2| The component is

start

L =0

Fig. 2: PSM of the Guidance component

initially in the Idle (I) state, where it reads data in its input
ports. If a new goal is received, the component goes to the
Planning (P) state, where it computes a path to reach the goal.
If no new goal is received but a path is being executed, the
component goes to the Following (F) state, in which it checks
if the current point has been reached, and then send the next
one. This example highlights two limitations of PSMs:
e We cannot execute two actions in a single period, and we
have to wait one period between executing the I/ and F

states, whereas it would be more efficient to execute both
actions in the same period;

o we can allocate only one period to each component,
meaning that the component will have the same reactivity
in the F and P states; as path planning takes more
computation time, it would be more interesting to have a
larger period when in the P state, and a smaller in the F
state to be more reactive.

D. Resources

In components-based architectures, data need to be ex-
changed between components. Real-time processed informa-
tion like sensor measures or actuator control inputs are nat-
urally transported through directed data ports (as done in
Orocos). As this approach needs local copy of the data to
protect their access, it is not adapted for more complex data
structures like environment maps or system databases which
rather need a get/update access paradigm.

All these data exchange mechanisms can be seen as a
resource sharing problem, and then need to be generalized.
Further, this generalization can constitute a convenient way to
implement interoperability with other middlewares by includ-
ing their specific data transport inside specific resources. This
avoids to implement particular functions within components
that do not have a specific real-time activity.

E. Tasks synchronization

One of the drawbacks raised is the lack of determinism
in the deployment process. Let’s consider a simple example
made of two tasks (71, T2) executed on a single processor;
the deployer objective is to “start 7; and start 75”. Timeline of
Fig.[3]illustrates the actual execution. The deployer is launched
at tg, and at ¢; task 7 is released. Contrary to the deployer, 7
is a real-time thread; consequently the deployer is preempted
by 71 and has to wait the end of 7; execution before starting
task 7o.

delay

Fig. 3: Synchronization lost

This timeline highlights three major problems:

o even if the deployer starts at ¢y the release date of task
71 is t1 and the delay between ¢y and ¢; is unknown;

e it is impossible to synchronize tasks 7 and 7v;

o the delay between t; and 5 is unknown.

These problems lead to limitations in the deployment capa-
bilities and to pessimism in the schedulability analysis [7].

F. Inline reconfiguration

Reconfiguring the architecture inline is a key feature to
improve the capability to adapt to unforeseen events. Basic
reconfigurations, like changing the computational part of a
component, are necessary to switch between algorithms (e.g.,
to manage several control modes according to some actuator
faults) efficiently. Complex reconfigurations, where some com-
ponents are added or removed, and connections are re-wired,
are necessary when new processing chains have to be set up,
e.g. when a sensor is broken (and a new one has to be used
instead), or becomes useless (e.g., GPS when indoors).

These reconfigurations must be performed rigorously, espe-
cially regarding real-time synchronisation in order to master
the impact of reconfigurations on the reactivity of the whole
application. We then need to have a deterministic synchro-
nisation scheme between tasks, and to be able to reset this
synchronisation after a reconfiguration.

III. MAUVE RUNTIME

In this section, we describe the concepts behind the design
of the MAUVE runtime, and we present some details regarding
its implementation as a C++ library.

A. Component

A component is defined by three entities: a shell, a core
and a finite-state machine (FSM). The shell describes the
interface of the component. It contains ports and properties.
The shell is the only visible part outside the component. The
core describes both the algorithmic part and the inner data of
the component. Thus, the core defines attributes and methods.
The core depends on the shell which means its methods can
interact with the shell. The FSM describes the behavior of
the component. The different actions in the FSM rely on the
core methods. Listing |1| shows the definition of the shell of
the Guidance component. It contains two properties, two input
ports and one output port.

Listing 1: Shell of the Guidance component
: public Shell {

1 struct GuidanceShell
Property <double> & target_threshold;
Property <double> & path_step;
ReadPort<Point2D> & position;
ReadPort<Point2D> & goal;
WritePort<Point2D> & target;

R T

Listing [2] defines the core of the Guidance component. Its
internal variables are the current goal and the current robot
position, as well as the path that is being executed. It defines
a set of methods that will be called from the FSM actions.

B. Enhanced Finite State Machine

Lessons learnt from PSM modeling using the MAUVE DSL
have brought us to enhance the specification of FSMs. New
clock-based FSMs are composed of two different type of
states:

Listing 2: Core of the Guidance component

1 struct GuidanceCore : public Core<GuidanceShell> {
2 Point2D current_goal , current_position;

3 std :: queue<Point2D> path;

4 bool has_new_goal();

5 void compute_path();

6 void follow_path();

7

e execution states are aimed to execute code (i.e. methods

defined is the component’s core).

o wait states pause the component for a specific duration.
There is no restriction in the clock-based FSM structure, thus
an execution state can be followed by another execution state.

Figure [represents the clock-based FSM of the Guidance
component. The limitations of the original PSM (Fig. [2) are

Fig. 4: Clock-based FSM of the Guidance component: circles
represent execution states, W; are wait states.

addressed in the following way: (1) the execution state [is
directly connected to P, then they can be executed without any
delay; (2) wait states W; have different clock values, making
the cycle I — P — I being executed with a period of 5 time
units, I — F' — I with a period of 2, and I — [with a
period of 1.

C. Resources

In MAUVE runtime, we introduce a generalized inter-
components communication scheme with the notion of Re-
source. A Resource has two main objectives: first it contains
a data, second it provides different services to interact with its
inner data. Component ports are connected to a resource using
its corresponding services. The basic resources SharedData
and RingBuffer are provided by the runtime to mimic
classical dataflow communication, and are accessible through
read and write service.

Moreover, this approach allows developers to define their
own resources by inheriting from the Resource class and
defining its services. Thus, Resource can be implemented
to offer access to complex or large data structures through
a get/update access paradigm. Also, by providing in the
interface, functions dedicated to data streaming, the interaction
with other middleware like ROS can be integrated.

D. Architecture and Deployment

Components and resources are instantiated and connected
within architectures. Components are then mapped to real-
time tasks by the deployer. The MAUVE runtime deployer

has been designed to have a complete control on the syn-
chronization between tasks. Timeline of Fig. [5 illustrates the
deployment of two tasks executed on the same processor by
the MAUVE runtime. Tasks 71 and 7o are synchronized with
the deployer, and their synchronization is maintained during
all the execution, contrary to the behavior resulting from the
Orocos deployer (Fig. [3).

tot1
ﬁ T2 T T2 T t
tot1

Fig. 5: Tasks synchronization

E. Reconfiguration

The MAUVE runtime allows to perform reconfigurations
by relying both on the component model and on the real-
time deployment. Indeed, it is possible to stop a component,
reconfigure it by changing its properties, replacing its shell,
its core, or its FSM, and restart it again while maintaining
synchronization with the other components. Listing [3] shows
a code snapshot performing a reconfiguration during the
exploration mission (Fig[I] Sec.[l). In order to make a sound

Listing 3: Reconfiguration code snapshot: the core of compo-
nent exploration is replaced.

1 time_ns_t clock = exploration_task—>get_time ();

2 exploration_task —=>stop () ;

3 exploration—>cleanup_core () ;

4 exploration —>replace_core<LocalExplorationCore >();
5 exploration—>configure_core () ;

6

exploration_task —start(clock, nullptr);

reconfiguration, with respect to real-time task synchronization,
we first get the reference clock of the task of the component to
be reconfigured. Then we stop the task, and replace the core of
the Exploration component. We then configure this core and
restart the task according to the same clock reference. Figure
[6] illustrates the real-time behavior of such a reconfiguration:
the second task is stopped in order to replace its core C'4 by
the core C'p (during the R activity). The task is restarted, the
synchronization being maintained.

== == 1
T @ 1 [&el

Fig. 6: Task synchronisation during reconfiguration of a core

F. Implementation

The implementation of the runtime concepts must guarantee
a real-time and deterministic execution of the components. In
that purpose, we made the following implementation choices:

« the system is executed on a real-time Linux OS;

e cach component is executed in a real-time posix thread;

e the priority inheritance protocol [8]] is used to access
common data;

« the monotonic clock is used as the reference for tasks;

¢ posix barrier are used to synchronize tasks at deployment.

IV. ROADMAP

The MAUVE runtime development is being finalized and
evaluated through the illustrative example. The ongoing work
mainly concerns the integration on a complete modeling
workflow, in which the planned developments are:

o to update the DSL and code generation using the MAUVE
runtime;

 to integrate generation of tracing in order to plug with
the real-time analysis process;

« to define a workflow to have data type models allowing to
generate resource-related code, both to ease development
and to automate interoperability with other middlewares;

o to model coordinate frame transformations to enhance
semantic associated with physical data.

MAUVE runtime is released as an open-source project,
under LGPL licence, as part of the MAUVE toolchain.
Regarding the MAUVE runtime, the MAUVE toolchain also
provides tutorials, common types for robotic applications,
and some basic elements like common shells, state machines
of specific task models (e.g., periodic state machines), ... The
MAUVE toolchain is available on gitlab at the address

https://gitlab.com/MAUVE/mauve_toolchain,

V. ACKNOWLEDGEMETS

This work is partially supported by the CPSELabs project
funded by European Community’s Horizon 2020 Programme
under grant agreement no 644400.

REFERENCES

[1] N. Gobillot, C. Lesire, and D. Doose, “A Modeling Framework for Soft-
ware Architecture Specification and Validation,” in SIMPAR, Bergamo,
Italy, 2014.

[2] P. Ligo-Blasco, F. D. del Rio, M. C. Romero-Ternero, D. Cagigas-
Muiz, and S. Vicente-Diaz, “Robotics software frameworks for multi-
agent robotic systems development,” Robotics and Autonomous Systems,
vol. 60, no. 6, 2012.

[3] P. Soetens and H. Bruyninckx, “Realtime Hybrid Task-Based Control for
Robots and Machine Tools,” in /CRA, Barcelona, Spain, 2005.

[4] N. Gobillot, F. Guet, D. Doose, C. Grand, C. Lesire, and L. Santinelli,
“Measurement-based real-time analysis of robotic software architectures,”
in IROS, Daejeon, South Korea, 2016.

[5] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Mg, “ROS: an open-source Robot Operating System,”
in ICRA Workshop on Open Source Software, Kobe, Japan, 2009.

[6] C. Schlegel, A. Steck, D. Brugali, and A. Knoll, “Design Abstraction and
Processes in Robotics: From Code-Driven to Model-Driven Engineering,”
in International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), Darmstadt, Germany, 2010.

[7] N. Gobillot, D. Doose, C. Lesire, and L. Santinelli, “Periodic state-
machine aware real-time analysis,” in ETFA, Luxembourg, 2015.

[8] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols:
An approach to real-time synchronization,” IEEE Trans. Comput., vol. 39,
no. 9, 1990.

https://gitlab.com/MAUVE/mauve_toolchain

	Introduction
	Background and Motivations
	Illustrative example
	Background
	Periodic State Machines
	Resources
	Tasks synchronization
	Inline reconfiguration

	MAUVE Runtime
	Component
	Enhanced Finite State Machine
	Resources
	Architecture and Deployment
	Reconfiguration
	Implementation

	Roadmap
	ACKNOWLEDGEMETS
	References

