System simulation of a fleet of drones to probe cumulus clouds

Rafael Bailon-Ruiz¹ Christophe Reymann¹ Simon Lacroix¹ Gautier Hattenberger² Hector Garcia de Marina² Fayçal Lamraoui³

SHARC 2017

June 29, 2017

- ¹LAAS-CNRS, France
- ²ENAC, France
- ³Météo-France

Context

- Characterize the boundary layer of clouds
- Follow 4D evolution of the cloud

Problem statement

Collect data with spatial resolution of 10m at 1Hz over the cloud lifespan: 1 hour over 1km³

Exploring clouds is a particularly complex task:

- Follow the 4D evolution of the cloud along 1D manifolds
- Highly constrained problem: Mission duration, UAV size and wind influence

The only way is to use muliple UAVs

Problem statement

Collect data with spatial resolution of 10m at 1Hz over the cloud lifespan: 1 hour over 1km³

Exploring clouds is a particularly complex task:

- Follow the 4D evolution of the cloud along 1D manifolds
- Highly constrained problem: Mission duration, UAV size and wind influence

The only way is to use muliple UAVs

Overall structure

¹C. Reymann, A. Renzaglia, F. Lamraoui, M. Bronz, and S. Lacroix, "Adaptive sampling of cumulus clouds with a fleet of UAVs," Autonomous robots, Jan. 2017.

Planning Coarse level: "map those volumes" Fine level: on-line optimal path generation.

Mapping Gaussian Process Regression to model the cloud

Mapping Gaussian Process Regression to model the cloud

Mapping Gaussian Process Regression to model the cloud

The need for a simulation architecture

Mapping and path planning were yet to be integrated with realistic flight simulators No existing straightforward way to simulate this kind of system as a whole

Primary goals of this work:

- Build a software architecture integrating realistic simulators
- Integrate the mapping and exploration algorithms within this architecture
- Test and validate the whole system.

The need for a simulation architecture

Mapping and path planning were yet to be integrated with realistic flight simulators No existing straightforward way to simulate this kind of system as a whole

Primary goals of this work:

- Build a software architecture integrating realistic simulators
- Integrate the mapping and exploration algorithms within this architecture
- Test and validate the whole system.

The need for a simulation architecture

Mapping and path planning were yet to be integrated with realistic flight simulators No existing straightforward way to simulate this kind of system as a whole

Primary goals of this work:

- Build a software architecture integrating realistic simulators
- Integrate the mapping and exploration algorithms within this architecture
- Test and validate the whole system.

Simulation backends

Environment:

MesoNH MeteoFrance's realistic cloud simulator Offline generation of a 64 km³ fair weather scenario

Flight:

Paparazzi ENAC's open source autopilot and ground control software

FlightGear Open source flight simulator

Concept of the simulation architecture

Design a new software architecture being able to:

- Be prepared to handle a fleet of aircraft
- Integrate the project's previous work
- Seamless transfer the algorithms to the real implementation
- Add new functionality easily

Design a new software architecture being able to:

- Be prepared to handle a fleet of aircraft
- Integrate the project's previous work
- Seamless transfer the algorithms to the real implementation
- Add new functionality easily

Design a new software architecture being able to:

- Be prepared to handle a fleet of aircraft
- Integrate the project's previous work
- Seamless transfer the algorithms to the real implementation
- Add new functionality easily

Design a new software architecture being able to:

- Be prepared to handle a fleet of aircraft
- Integrate the project's previous work
- Seamless transfer the algorithms to the real implementation
- Add new functionality easily

Design a new software architecture being able to:

- Be prepared to handle a fleet of aircraft
- Integrate the project's previous work
- Seamless transfer the algorithms to the real implementation
- Add new functionality easily

ROS implementation of the simulation architecture

ROS implementation of the simulation architecture

Time management

Input (Topic)

Process (Node)

Outputs (Topics)

Mapping & path planning node

Gaussian process hyper-parameters optimization

• Improve prediction with increasing wind samples

ROS implementation of the simulation architecture

MesoNH interface with flight backends

Paparazzi vs. FlightGear control loops

Interface with Paparazzi

Figure: Interface between Paparazzi and SkyScanner ROS package

Interface with FlightGear

Figure: Interface scheme between FlightGear and SkyScanner ROS package

The SkyScanner ROS package

Figure: Whole simulation and control loop

Resulting trajectories

Summary

- Deployment of a simulation architecture
 - Path planning and mapping algorithms integration
 - Interfaces with realistic simulators
 - Extensible & Reusable
- Available in: http: //github.com/rafael1193/ skyscannner_integration

